

Wissenschaftliches Rechnen II/Scientific Computing II

Sommersemester 2016 Prof. Dr. Jochen Garcke Dipl.-Math. Sebastian Mayer

Exercise sheet 2

To be handed in on Thursday, 28.4.2016

1 Group exercises

G 1. (Fourier system)

Consider the Hilbert space

$$L_2([-\pi,\pi]) = \left\{ f : [-\pi,\pi] \to \mathbb{C} \text{ such that } \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx < \infty \right\}$$

with inner product $\langle f,g \rangle = (2\pi)^{-1} \int_{-\pi}^{\pi} f(x)\overline{g(x)}dx$. Show that the *Fourier system* $(e_n)_{n \in \mathbb{N}}$ given by $e_n(x) = \exp(inx)$ forms an orthonormal system in $L_2([-\pi,\pi])$.

G 2. (Kernel spaces of trigonometric polynomials, Dirichlet kernel)

For $n \in \mathbb{N}$ consider the space of trigonometric polynomials

$$\mathcal{H}_n := \left\{ f: [-\pi, \pi] \to \mathbb{C} : f(x) = \sum_{k=-n}^n \alpha_k \exp(ikx), \ \alpha_k \in \mathbb{C} \right\}.$$

equipped with the L_2 -inner product $\langle \cdot, \cdot \rangle$ defined in Exercise G1. Show that \mathcal{H}_n is a reproducing kernel Hilbert space with kernel $D_n(x, y) = 1 + 2 \sum_{k=1}^n \cos(k(x-y))$. Is D_n well-defined for $n \to \infty$? **Remark:** D_n is called *Dirichlet kernel*.

G 3. (Fejér kernels)

Let $f \in L_2([-\pi,\pi])$. The *n*th Fourier partial sum is given by

$$s_n(\theta) := s_n(f)(\theta) := \sum_{k=-n}^n \langle f, e_k \rangle e_k(\theta) = \frac{1}{2\pi} \sum_{k=-n}^n e_k(\theta) \int_{-\pi}^{\pi} f(x) e_k(-x) dx,$$

and $\langle f, e_k \rangle$ is called the *k*th *Fourier coefficient*. The *n*th *Cesàro* mean is given by $\sigma_n(\theta) := \sigma_n(f)(\theta) := \frac{1}{n+1} \sum_{k=0}^n s_k(\theta)$.

- a) By considering the Fourier coefficients of s_n and σ_n , discuss the difference between approximating with Fourier partial sums and approximating with Cesàro means.
- b) Show that $\sigma_n(\theta) = \langle f, \phi_n(\theta, \cdot) \rangle$, where

$$\phi_n(x,y) = \frac{1}{n+1} \left(\frac{\sin((n+1)(x-y)/2)}{\sin((x-y)/2)} \right)^2$$

Hint: Use the trigonometric identity $\sum_{k=-n}^{n} e^{ikx} = \frac{\sin((n+1/2)x)}{\sin(x/2)}$

c) Determine the Hilbert space $\mathcal{H}(\phi_n) \subset L_2([-\pi,\pi])$ such that $\phi_n(x,y)$ is the reproducing kernel. By comparing the unit balls of $\mathcal{H}(\phi_n)$ and \mathcal{H}_n (see G2), which Hilbert space contains the "smoother" trigonometric polynomials in the sense that high oszillations are more penalized?

2 Homework

H 1. This homework exercise deals with the concept of *approximate identities* which is conceptually strongly related to reproducing kernels.

Definition 1 (Approximate identity). A sequence of functions $(\phi_n)_{n \in \mathbb{N}}$ over $[-\pi, \pi]$ is called *approximate identity* if

1. $\phi_n \ge 0$.

2.
$$\int_{-\pi}^{\pi} \phi_n(x) \mu(dx) = 2\pi.$$

3. For each $\delta > 0$, we have $\lim_{n \to \infty} \int_{\{|x| \le \delta\}} \phi_n(x) \mu(dx) = 2\pi$.

Equivalently, for each $\delta > 0$, $\lim_{n \to \infty} \int_{\{|x| > \delta\}} \phi_n(x) \mu(dx) = 0$.

Let $(\phi_n)_{n \in \mathbb{N}}$ be the sequence of Fejér kernels introduced in G 3.

- a) With the abuse of notation $\phi_n(x) = \phi_n(0, -x)$, show that $(\phi_n)_{n \in \mathbb{N}}$ is an approximate identity.
- b) Plot the Dirichlet and Fejér kernels for various values of n. Use the accompanying Jupyter notebook which you find on the lectures' homepage.
- c) Let \mathcal{C} be the set of all continuous, 2π -periodic functions $f : [-\pi, \pi] \to \mathbb{C}$. Using a) show that span $\{e_k : k \in \mathbb{N}\}$ is dense in \mathcal{C} with respect to the uniform norm $\|f\|_{\infty} = \sup_{x \in [-\pi, \pi]} |f(x)|.$
- d) Show that the Fouriersystem introduced in G1 is an orthonormal Hilbertbasis in $L_2([-\pi,\pi])$. **Hint:** Use the well-known fact that the set of continuous, 2π -periodic functions is dense in $L_2([-\pi,\pi])$.

(8 Punkte)

H 2. (Structure implied by the kernel)

Let Ω be some set and \mathcal{H} be a Hilbert space of real valued functions on Ω with continuous point evaluations. Let $k : \Omega \times \Omega \to \mathbb{R}$ denote the reproducing kernel of \mathcal{H} .

a) Show that $d: \Omega \times \Omega \to [0,\infty], d(x,y) := \sqrt{k(x,x) + k(x,y) - 2k(x,y)}$ defines a *pseudometric* on Ω , that is,

(i)
$$d(x, y) = d(y, x)$$

(ii) $d(x, y) \le d(x, z) + d(y, z)$

- b) Assume that \mathcal{H} separates the points of Ω , that is, for every pair of different points $x, y \in \Omega, x \neq y$, there is a function $f \in \mathcal{H}$ such that $f(x) \neq f(y)$. Show that d is then even a metric on Ω .
- c) Assume again that \mathcal{H} separates the points of Ω . Show that all functions $f \in \mathcal{H}$ are always Lipschitz-continuous with respect to d.
- d) Let $\Omega = \mathbb{R}$. Assume that the Hilbert space \mathcal{H} is such that the *Gauß kernel* $k(x, y) := \exp(-|x y|)$ is the reproducing kernel. Show that \mathcal{H} separates the points of Ω .

(6 Punkte)

H 3. (Interpolation with the Gauss kernel)

This homework deals with the interpolation of 2-variate functions using the Gauss kernel

$$k(x,y) = \exp(-\gamma ||x - y||_2^2)$$
.

Please use the accompanying Jupyter notebook to solve the programming tasks. You find the notebook on the lecture's homepage.

(6 Punkte)