Wissenschaftliches Rechnen II/Scientific Computing II

Sommersemester 2016
Prof. Dr. Jochen Garcke
Dipl.-Math. Sebastian Mayer
universitätbonn

Exercise sheet 4

To be handed in on Thursday, 12.05.2016

1 Group exercises

G 1. Let $k: \Omega^{2} \rightarrow \mathbb{R}$ be positive semi-definite. Provide details for the proof of Theorem 34. Concretely,
a) Recall $H=\operatorname{span}\{k(x, \cdot) \mid x \in \Omega\}$ with inner product $\langle\cdot, \cdot\rangle_{H}$ given by

$$
\langle f, g,\rangle H=\sum_{i=1}^{n} \sum_{j=}^{m} a_{i} b_{j} k\left(x_{i}, y_{j}\right)
$$

for $f=\sum_{i=1}^{n} a_{i} k\left(x_{i}, \cdot\right), g=\sum_{j=1}^{m} b_{j} K\left(y_{j}, \cdot\right)$. Let $\left(h_{n}\right)_{n \in \mathbb{N}}, h_{n} \in H$, be a Cauchy sequence. Show that the pointwise limit $h(t):=\lim _{n \rightarrow \infty} h_{n}(t)$ exists.
b) Let \mathcal{N}_{k} be the set of pointwise limits of arbitrary Cauchy sequences in H. For $g, f \in$ \mathcal{N}_{k}, let

$$
\langle f, g\rangle_{k}:=\lim _{n \rightarrow \infty}\left\langle f_{n}, g_{n}\right\rangle_{H}
$$

Verify that $\langle f, f\rangle=0$ if and only if $f=0$, that is, $\langle\cdot, \cdot\rangle$ is indeed a scalar product.
c) Show that \mathcal{N}_{k} is complete with respect to the norm induced by $\langle\cdot, \cdot\rangle_{k}$.

G 2. (Interpolation and discrete Fourier transform)
For even $n \in \mathbb{N}$, consider again the space of complex-valued trigonometric polynomials \mathcal{H}_{n} introduced in Sheet 2, Exercise G2. Further consider the sampling points

$$
x_{k}=\frac{2 \pi k}{n} \in[-\pi, \pi], \quad k=-n / 2, \ldots, 0, \ldots, n / 2-1 .
$$

a) Consider the subspace $\widetilde{\mathcal{H}}_{n}=\left\{f \in \mathcal{H}_{n}:\left\langle f, e_{0}\right\rangle=0\right\}$, which has the kernel $\widetilde{D}_{n}(x, y)=$ $2 \sum_{k=1}^{n} \cos (k(x-y))$. Show that the matrix $\widetilde{\mathbf{D}}_{n}:=\frac{1}{2 n}\left(\widetilde{D}_{n}\left(x_{j}, x_{l}\right)\right)_{j, l=-n / 2, \ldots, n / 2-1}$ is the identity, that is,

$$
\widetilde{D}_{n}(2 \pi j / n, 2 \pi l / n)= \begin{cases}2 n & : j=l \\ 0 & : j \neq l .\end{cases}
$$

Hint: Use the following fact about geometric series: for $r \neq 1$, we have $\sum_{k=0}^{n} r^{k}=$ $\frac{1-r^{n+1}}{1-r}$.
b) Assume to be given observations $\left(x_{k}, y_{k}\right)_{k=-n / 2, \ldots, n / 2-1}$. Determine the polynomial $g_{n} \in \widetilde{H}_{n}$ which solves the interpolation problem

$$
g_{n}\left(x_{i}\right)=y_{i}, \quad i=-n / 2, \ldots, n / 2-1 .
$$

Determine the Fourier coefficients of g_{n}.
Remark: The Fourier coefficients of g_{n} are the discrete Fourier transform of the vector $\left(y_{k}\right)_{k=-n / 2, \ldots, n / 2-1}$.

2 Homework

H 1. (Sums of kernel spaces)

Let $k_{1}, k_{2}: \Omega^{2} \rightarrow \mathbb{R}$ be two positive semi-definite mappings. Consider $k=k_{1}+k_{2}$ given by

$$
k(x, y):=k_{1}(x, y)+k_{2}(x, y) .
$$

Show the native space \mathcal{N}_{k} is given by

$$
\mathcal{N}_{k}=\left\{f_{1}+f_{2} \mid f_{1} \in \mathcal{N}_{k_{1}}, f_{2} \in \mathcal{N}_{k_{2}}\right\}
$$

and the norm fufills

$$
\|f\|_{k}^{2}=\min \left\{\left\|f_{1}\right\|_{k_{1}}^{2}+\left\|f_{2}\right\|_{k_{2}}^{2}: f=f_{1}+f_{2}, f_{i} \in \mathcal{N}_{k_{i}}\right\} .
$$

Hint: Consider the product space $H=\mathcal{N}_{k_{1}} \times \mathcal{N}_{k_{2}}$ with norm given by $\left\|\left(f_{1}, f_{2}\right)\right\|_{H}^{2}=$ $\left\|f_{1}\right\|_{k_{1}}^{2}+\left\|f_{2}\right\|_{k_{2}}^{2}$ and find a suitable closed subspace.

H 2. (Kernel smoothing spline)

For even $n \in \mathbb{N}$, let \mathcal{H}_{n} be the space of trigonometric polynomials as introduced in Sheet 2, G2. Let $x_{-n / 2}, \ldots, x_{n / 2-1}$ be the sampling points given in G2. Further, let $f:[-\pi, \pi] \rightarrow \mathbb{C}$ be a 2π-periodic function. You are given noisy observations

$$
y_{i}=f\left(x_{i}\right)+\epsilon_{i}, \quad i=-n / 2, \ldots, n / 2-1 .
$$

The goal is to solve the following kernel smoothing spline optimization problem explicitly:

$$
\begin{equation*}
\min _{f_{\lambda} \in \mathcal{H}_{n}} \frac{1}{2 n} \sum_{i=-n / 2}^{n / 2}\left(y_{i}-f_{\lambda}\left(x_{i}\right)\right)^{2}+\frac{\lambda}{2 \pi} \int_{-\pi}^{\pi}\left(f_{\lambda}^{(m)}(x)\right)^{2} d x \tag{1}
\end{equation*}
$$

Proceed as follows:
a) Determine the trigonometric polynomial $f_{\text {noisy }} \in \mathcal{H}_{n}$ which solves the interpolation problem

$$
f_{\text {noisy }}=y_{i}, \quad i=-n / 2, \ldots, n / 2-1 .
$$

b) Use a) to reformulate the optimization problem (1) in terms of the Fourier coefficients of $f_{\text {noisy }}$ and f_{λ}. Determine the Fourier coefficients of the trigonometric polynomial $f_{\lambda}^{*} \in \mathcal{H}_{n}$ which minimizes (1).
c) Compare the Fourier coefficients of $f_{\text {noisy }}$ and f_{λ}^{*} and interpret the difference between $f_{\text {noisy }}$ and f_{λ}^{*}.

