Wissenschaftliches Rechnen II/Scientific Computing II

Sommersemester 2016
Prof. Dr. Jochen Garcke
Dipl.-Math. Sebastian Mayer
universitätbonn

Exercise sheet 6

To be handed in on Thursday, 02.06.2016

1 Some very basic probability theory

Let (X, Y) be a tuple of random variables, each taking values in \mathbb{R}, with joint probability density $p(x, y)$, that is, $P\left[(X, Y) \leq\left(x_{0}, y_{0}\right)\right]=\int_{-\infty}^{x_{0}} \int_{-\infty}^{y_{0}} p(x, y) \mathrm{d} x \mathrm{~d} y$. The marginal density of X is given by $p_{X}(x)=\int_{\mathbb{R}} p(x, y) \mathrm{d} y$. The expectation of X is given by $E[X]=$ $\int_{\mathbb{R}} x p_{X}(x) \mathrm{d} x$. The covariance of X, Y is defined as $\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]$. The conditional density of X given we have observed $Y=y_{0}$ (which can happen if $\left.p_{Y}\left(y_{0}\right)>0\right)$ is defined by $p\left(x \mid y_{0}\right)=\frac{p\left(x, y_{0}\right)}{p_{Y}\left(y_{0}\right)}$. The random variables X, Y are said to be independent if $p(x, y)=p_{X}(x) p_{Y}(y)$. Bayes' rule states

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

A multivariate Gaussian random vector X with mean $\mu \in \mathbb{R}^{d}$ and symmetric, positive definite covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$ has a probability density

$$
p(x)=(2 \pi)^{-D / 2}|\Sigma|^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma-1(x-\mu)\right)
$$

We write $X \sim \mathcal{N}(\mu, \Sigma)$.

2 Group exercises

G 1. (Bayesian analysis of linear regression)
Consider the standard linear regression model

$$
y_{i}=x_{i}^{T} w+\varepsilon_{i}, \quad i=1, \ldots, n
$$

where $X=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{d \times n}$ is the matrix of given input vectors, $w \in \mathbb{R}^{d}$ the unknown weight vector, and the ε_{i} are i.i.d with $\varepsilon_{i} \sim \mathcal{N}\left(0, \sigma_{n}^{2}\right)$.
a) Determine the probability density of $y=\left(Y_{1}, \ldots, Y_{n}\right)$.
b) The Bayesian approach is to specify a prior distribution over w, which expresses the belief about the value of w before observing the data. Assume $w \sim \mathcal{N}\left(0, \Sigma_{p}\right)$ with covariance matrix $\Sigma_{p} \in \mathbb{R}^{d \times d}$. Derive via Bayes' rule the posterior density of W, which expresses our beliefs about the value of w after observing the concrete data $y=\left(y_{1}, \ldots, y_{n}\right)$. Determine also the posterior density $p\left(y_{*} \mid y\right)$ of the predicted value $y_{*}=x_{*}^{T} w$ given a new data point x_{*}.
c) Show that $E\left[y_{*}\right]=x_{*}^{T} \Sigma_{p} X\left(K+\sigma_{n}^{2}\right)^{-1} y$, where $K=X^{T} \Sigma_{p} X$. Make a connection between the Bayesian approach and regularization.

G 2. You are given a random vector $U \sim \mathcal{N}\left(0, I_{d}\right)$, that is, U is standard normally distributed and takes values in \mathbb{R}^{d}. For given mean $m \in \mathbb{R}^{d}$ and covariance $K \in R^{d \times d}$, find a transformation $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $\varphi(U) \sim \mathcal{N}(m, K)$.

G 3. (Lemma 46 revisited)

Assume to be given data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ and a Hilbert space \mathcal{H} with kernel k. Let $f_{\left(x_{n}, y_{n}\right)}$ be the solution of

$$
\min _{f \in \mathcal{H}} \sum_{i=1}^{n-1}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{k} .
$$

Let $\tilde{y}_{n}=f_{\left(x_{n}, y_{n}\right)}\left(x_{n}\right)$. Give an alternative proof of Lemma 46 based on the representer theorem. To this end, consider the system of linear equations $\left(K+\lambda I_{n}\right) \tilde{\alpha}=\tilde{y}$, where $\tilde{y}_{i}=y_{i}$ for $i<n$, and show that $\tilde{\alpha}_{n}=0$.

3 Homework

H 1. (Smoothing spline)
For given data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ with $x_{0}=0<x_{1}<x_{2}<\cdots<x_{n}<1$ and $x_{i} \in[0,1]$ and regularization parameter $\lambda>0$, consider the problem

$$
\min _{f \in W^{2}([0,1])} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int_{0}^{1}\left(f^{\prime \prime}(x)\right)^{2} d x
$$

a) Give an explicit formula for the kernel $R_{1}(x, y)=\int_{0}^{1} G_{2}(x, z) G_{2}(y, z) \mathrm{d} z$, where G_{2} is the Green's function computed in Exercise G3 on Sheet 5.
b) Show that the optimal solution \hat{f}_{λ} has a representation $\hat{f}_{\lambda}(x)=\beta_{0} \phi_{0}(x)+\beta_{1} \phi_{1}(x)+$ $\sum_{i=1}^{n} \alpha_{i} R_{1}\left(x_{i}, x\right)$. Specify ϕ_{0}, ϕ_{1} and show that β_{0}, β_{1} are unique.
c) Show that \hat{f}_{λ} is a polynomial of degree 3 on every interval $\left[x_{i}, x_{i+1}\right]$ for $i=0, \ldots, n-2$ and a polynomial of degree 1 on $\left[x_{n}, 1\right]$.
d) To what reduces the solution \hat{f}_{λ} in the limits $\lambda \rightarrow 0$ and $\lambda \rightarrow \infty$. You don't have to provide a proof, just give some plausible arguments.

H 2. (Cross-validation)
Provide a proof for Theorem 47 presented in the lecture. Hint 1: According to Lemma 46 , we know that we obtain $f_{D_{v}}$ by learning on the modified data vector $\tilde{y}^{D_{v}} \in \mathbb{R}^{N}$ given by

$$
\tilde{y}^{D_{v}}=y-I_{D_{v}}^{D_{v}} y+I_{D_{v}}^{D_{v}} y^{D_{v}}
$$

Use $\tilde{y}^{D_{v}}$ and the linearity of the smoothing matrix $K G$, which maps training values y to fitted values \hat{y}, to prove Theorem 47.
Hint 2: Every positive definite $m \times m$ matrix M defines a positive definite kernel on \mathbb{R}^{m} via $k_{M}(x, y)=x^{T} M y$.

H 3. (Programming exercise: Cross-validation)
See the accompanying notebook.

H 4. (Programming exercise: Gaussian processes)
See the accompanying notebook.

