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1 Model Selection

G 1. (Bias-variance decomposition)

Consider the squared loss `2(y, t) = (y − t)2. Let D = {(X1, Y1), . . . , (Xn, Yn)}. The
expected test error for a fixed new input X = x of a learning method L is given by

err(L, x) := E[`2(Y, f̂(X))|X = x] = E[`2(Y, f̂(x))],

where f̂(X) = L(D)(X). Show that err(L, x) can be decomposed as follows

err(L, x) = σ2 + (bias(L, x))2 + var(L, x)

with irreducible error σ, bias term bias(L, x) = f(x) − E[f̂(x)], and variance term
var(L, x) = E[(f̂(x) − E[f̂(x)])2]. Try to explain what kind of error each of the three
terms describe.

Solution. To obtain the decomposition, use that ε is independent of the random training
data D and add and subtract E[f̂(x)]:

E[(f(x) + ε− f̂(x)2] = E[ε2] + E[(f(x)− E[f̂(x)] + E[f̂(x)]− f̂(x))2].

The rest is simply calculating. The irreducible error cannot be avoided due to the noise
in new observations. The bias is the approximation error which the learning method
makes on average (so you train over and over again with different training data, average
all obtained fits and consider the difference to f(x)). The variance provides a measure for
how much the various fits obtained for different training data deviate from the average
fit.

G 2. (Extra- vs. in-sample error)

Let Ỹ1, . . . , Ỹn be an independent copy of Y1, . . . , Yn and L some learning method. Let

R`2,in(f) =
1

n

n∑
i=1

E[`2(Ỹi, f(xi))]

be the in-sample risk. The expected in-sample error for given sampling points x1, . . . , xn
is defined as

errin(L, x1, . . . , xn) = E[R`2,in(L(D)) | X1 = x1, . . . , Xn = xn],

where D is defined in G1.

a) Let P = PY |X · PX and f̂ = L(Dtrain). What is the difference between the risk

R`2,P (f̂), the empirical risk R`2,emp(f̂), the in-sample risk R`2,in(f̂), the expected
in-sample error errin(L, x, . . . , xn), and the expected test error err(L, x).



b) Show that E[R`2,P (L(D))] = E[err(L,X)].

c) Let f̂ = L(D). Show that

errin(L, x1, . . . , xn) = E[R`2,emp(f̂) | X1 = x1, . . . , Xn = xn] +
2

N

N∑
i=1

cov(Yi, f̂(xi)).

Solution.

a) The risk R`2,P (f̂) is mean prediction error over all potential future observations
(xnew, ynew) (represented by the random tuple (X,Y )) when we only consider the
given training data Dtrain. The empirical risk is the average prediction error the fit f̂
makes in reproducing the training observations y1, . . . , yn. The in-sample risk is the
average prediction error the fit f̂ (for fixed training data Dtrain) makes averaged over
all potential new sample values ỹ1, . . . , ỹn (represented by taking the expectation of
the random variables Ỹ1, . . . , Ỹn) at the given sample points x1, . . . , xn. The expected
in-sample error errin(L, x, . . . , xn) is the mean in-sample risk over all potential trai-
ning samples values (represented by the random variables Y1, . . . , Yn) while keeping
the sample points x1, . . . , xn fixed.

b) Simply use that (X,Y ) is independent of D, which allows you to interchange the
order of taking expectations.

c) Simple calculating gives

errin(L, x1, . . . , xn)−E[R`2,emp(f̂) | X1 = x1, . . . , Xn = xn] =
2

n

n∑
i=1

E[(Yi−E[Yi])f̂(xi)].

Now we add add and substract E[f̂(xi)] to obtain

E[(Yi − E[Yi])(̂f(xi)− E[f̂(xi)] + E[f̂(xi)]]

= E[(Yi − E[Yi])(f̂(xi)− E[f̂(xi)]) + E[(Yi − E[Yi])E[f̂(xi)]]

= cov(Yi, f̂(xi)).

2 Support Vector Machines

G 3. (Geometrical interpretation of slack variables)

Consider the soft margin SVM

min
w∈R2,b∈R

1

2
wTw + C

n∑
j=1

ξj s.t. yi(w
Txi + b) ≥ 1− ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n.

Give a geometric interpretation of the slack variables ξ1, . . . , ξn. To this end, fix some
feasible vector w ∈ R2, assuming w.l.o.g. w1 < 0 and w2 > 0. Furthermore, consider
w.l.o.g. the first data points (x, y) = (x1, y1) with x = (x1, x2). Now derive the geo-
metrical interpretation by considering when ξ > 0 is required in the linear constraint
y(wTx+ b) ≥ 1− ξ.
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Solution. If y = 1 then ξ > 0 if and only if

x2 <
1− b
w2
− w1

w2
x1.

In an analogous manner, in case that y = 1 then ξ > 0 iff

x2 >
−1− b
w2

− w1

w2
x1.

Assume now that (x, y) is a data point correctly classified by w. Then the slack va-
riable is nonzero if x lies inside a tube of width 2/w2 in x2-direction around the se-
perating hyperplane given by x2 = − b

w2
− w1

w2
x1. Consequently, the objective function

minw∈R2 wTw + Cξ penalizes margin errors (i.e., points inside the tube or lying in the
wrong affine hyperplane) and not only classification errors (i.e., points lying in the wrong
affine hyperplane).
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