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1 Model Selection

In previous programming exercises you dealt with the regularization parameter, k-fold
cross valdiation to choose a good regularization parameter, and the computation of error
measures. This usage of cross validation and the computation of errors was somewhat
adhoc. We will use this exercise sheet and its programming exercises to put the estimation
of the regularization parameter on more solid grounds from the viewpoint of statistical
learning theory. To this end, imagine the following situation. You are given some data
Dtrain = {(x1, y1), . . . , (x1, yn)}, xi ∈ Ω ⊆ R, yi ∈ R, and you conjecture that there is
some function f : Ω→ R which explains the data, i.e., the sample value yi is the function
value f(xi) perturbed by noise. Now you want to use some regularized kernel regression
procedure to learn f . There are two different problems you have to address:

• Model selection: estimating the performance of different regularization parame-
ters in order to choose the best one.

• Model assessment: having chosen a final model, estimating its prediction error
(generalization error) on new data.

In order to do model selection and assessment, we use the following statistical model
how the data has been generated. We assume that the data (x1, y1), . . . , (xn, yn) are
realizations of n i.i.d. copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ), where X is a random
variable taking values in Ω and Y is a random variable taking values in R, which is given
by

Y = f(X) + ε,

where ε ∼ N (0, σ2), σ > 0 fixed, is independent of X. The regularized kernel regression
procedure can now be considered as a learning method L :

⋃
n∈N(Ω×R)n → {f : Ω→ R},

which maps given training data Dtrain to a regression fit L(Dtrain) = f̂ : Ω→ R.

G 1. (Bias-variance decomposition)

Consider the squared loss `2(y, t) = (y − t)2. Let D = {(X1, Y1), . . . , (Xn, Yn)}. The
expected test error for a fixed new input X = x of a learning method L is given by

err(L, x) := E[`2(Y, f̂(X))|X = x] = E[`2(Y, f̂(x))],

where f̂(X) = L(D)(X). Show that err(L, x) can be decomposed as follows

err(L, x) = σ2 + (bias(L, x))2 + var(L, x)

with irreducible error σ, bias term bias(L, x) = f(x) − E[f̂(x)], and variance term
var(L, x) = E[(f̂(x) − E[f̂(x)])2]. Try to explain what kind of error each of the three
terms describe.



G 2. (Extra- vs. in-sample error)

Let Ỹ1, . . . , Ỹn be an independent copy of Y1, . . . , Yn and L some learning method. Let

R`2,in(f) =
1

n

n∑
i=1

E[`2(Ỹi, f(xi))]

be the in-sample risk. The expected in-sample error for given sampling points x1, . . . , xn
is defined as

errin(L, x1, . . . , xn) = E[R`2,in(L(D)) | X1 = x1, . . . , Xn = xn],

where D is defined in G1.

a) Let P = PY |X · PX and f̂ = L(Dtrain). What is the difference between the risk

R`2,P (f̂), the empirical risk R`2,emp(f̂), the in-sample risk R`2,in(f̂), the expected
in-sample error errin(L, x, . . . , xn), and the expected test error err(L, x).

b) Show that E[R`2,P (L(D))] = E[err(L,X)].

c) Let f̂ = L(D). Show that

errin(L, x1, . . . , xn) = E[R`2,emp(f̂) | X1 = x1, . . . , Xn = xn] +
2

N

N∑
i=1

cov(Yi, f̂(xi)).

2 Support Vector Machines

G 3. (Geometrical interpretation of slack variables)

Consider the soft margin SVM

min
w∈R2,b∈R

1

2
wTw + C

n∑
j=1

ξj s.t. yi(w
Txi + b) ≥ 1− ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n.

Give a geometric interpretation of the slack variables ξ1, . . . , ξn. To this end, fix some
feasible vector w ∈ R2, assuming w.l.o.g. w1 < 0 and w2 > 0. Furthermore, consider
w.l.o.g. the first data points (x, y) = (x1, y1) with x = (x1, x2). Now derive the geo-
metrical interpretation by considering when ξ > 0 is required in the linear constraint
y(wTx+ b) ≥ 1− ξ.

3 Homework

H 1. Let H be a Hilbertspace over Ω ⊆ R and k : Ω×Ω→ R the reproducing kernel of
H. Consider once again the regularized kernel regression problem

L(Dtrain) = argminf∈H
1

n

n∑
i=1

(yi − f(xi))
2 + λ‖f‖2k

for given data Dtrain = {(x1, y1), . . . , (xn, yn)}.

a) Give explicit formulas for the bias and the variance term from G1.

b) Let K = (k(xi, xi))i,j=1,...,n and G = (K + λIn)−1. Consider the smoothing matrix

Sλ = KG. Show that for the covariance term
∑N

i=1 cov(Yi, f̂(xi)), which appears in
G2 c), we have

N∑
i=1

cov(Yi, f̂(xi)) = trace(Sλ)σ.
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(5 Punkte)

H 2. (ν-support vector classifer)

For ν > 0, consider the primal problem for the ν-SV classifier

min
w∈H,ξ∈Rn,ρ∈R

1

2
‖w‖2k − νρ+

1

n

n∑
j=1

ξj s.t. yi(〈w, xi〉) ≥ ρ− ξ

ξi ≥ 0, ρ ≥ 0.

Note that xi denotes the feature representation of the ith sample point. The empirical
margin error for a feasible w ∈ H is given by

Rρ(w) :=
1

n
|{i ∈ {1, . . . , n} : yi〈w, xi〉 < ρ}|.

a) Suppose the above minimization problem has a solution with ρ > 0. Show that ν is
an upper bound on the fraction of margin errors and a lower bound on the fraction
of support vectors.

b) Determine the dual quadratic optimization problem. Hint: Use that the solution has
a representation w =

∑n
i=1 λik(·, xi).

(5 Punkte)

H 3. (Programming task - regularization parameter and cross validation revisited)

See the accompanying notebook.

(5 Punkte)

H 4. (Programming task - bone mineral density estimation)

See the accompanying notebook.

(5 Punkte)
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