

Wissenschaftliches Rechnen II/Scientific Computing II

Sommersemester 2016 Prof. Dr. Jochen Garcke Dipl.-Math. Sebastian Mayer

Exercise sheet 9 To be handed in on Thursday, 23.06.2016 Generalized interpolation, integration

1 Group exercises

G 1. (Integration in kernel spaces)

Let Ω be some set and $\rho : \Omega \to [0, \infty)$ a density function. Further let \mathcal{H} be a Hilbert space of real-valued functions on Ω with kernel k such that $\int_{\Omega} \sqrt{k(x, x)} \rho(x) dx < \infty$.

- a) Show that \mathcal{H} consists of ρ -integrable functions and that the integration functional $\operatorname{Int}(f) = \int_{\Omega} f(x)\rho(x)dx$ is continuous.
- b) Determine the function $h \in \mathcal{H}$ that represents the integration functional Int.

Solution.

a) For all $f \in \mathcal{H}$, we have

$$\int_{\Omega} |f(x)|\rho(x)dx = \int_{\Omega} |\langle f, k(x, \cdot)\rangle|\rho(x)dx \le \|f\|_k \int_{\Omega} \|k(x, \cdot)\|_k \rho(x)dx < \infty.$$

Since $||k(x, \cdot)||_k = \sqrt{k(x, x)}$, we conclude that every $f \in \mathcal{H}$ is integrable with respect to the density ρ . Moreover,

$$|\operatorname{Int}(f)| \le \operatorname{Int}(|f|) \le ||f||_k \int_{\Omega} \sqrt{k(x,x)} \rho(x) dx,$$

hence Int is a bounded linear functional, which is equivalent to being a continuous linear functional.

b) By Riesz' representer theorem, there is a function $h \in \mathcal{H}$ such that $Int(f) = \langle h, f \rangle$. This function is pointwise given by

$$h(x) = \langle h, k(x, \cdot) \rangle = \int_{\Omega} k(x, y) \rho(y) dy.$$

G 2. (Representation of general bounded linear functionals)

Let k be a kernel and \mathcal{H} its native Hilbert space. Let $\lambda, \mu \in \mathcal{H}^*$ be two continuous functionals. Show that $\lambda^2 k(\cdot, y) \in \mathcal{H}$ and

$$\lambda(f) = \langle f, \lambda^2 k(\cdot, y) \rangle_k \quad \text{for all } f \in \mathcal{H}$$

Moreover, show that

$$\langle \lambda, \mu \rangle_{\mathcal{H}^*} = \lambda^1 \mu^2 k(x, y).$$

Solution. Let us write $k_x(\cdot) = k(x, \cdot)$, that is, we consider the kernel k as a function of the second argument with parameter x. Since $\lambda \in \mathcal{H}^*$, there is by Riesz' representer theorem a function $u_{\lambda} \in \mathcal{H}$ such that $\langle u_{\lambda}, f \rangle = \lambda(f)$ for all $f \in \mathcal{H}$. Since k_x represents the evaluation at the point x, we have $\lambda(k_x) = \langle u_{\lambda}, k_x \rangle_k = u_{\lambda}(x)$. Hence, $\lambda^2 k(\cdot, y) = u_{\lambda} \in \mathcal{H}$. Analogously, we find a function u_{μ} such that $\mu(k_x) = \langle u_{\mu}, k_x \rangle_k = u_{\mu}(x)$. Then,

$$\langle \lambda, \mu \rangle_{\mathcal{H}^*} = \langle u_\lambda, u_\mu \rangle_k = \lambda(u_\mu) = \lambda(\mu(k_{\cdot})) = \lambda^1 \mu^2 k(x, y).$$

G 3. (Differentiable kernels)

Let $\Omega = [0,1]$ and k(x,y) be a kernel on Ω^2 which has continuous partial derivatives $\partial_x k$, $\partial_y k$. Assume that

$$\lim_{h_1,h_2\to 0} \frac{k(x+h_1,x+h_2) - k(x+h_1,x) - k(x,x+h_2) + k(x,x)}{h_1h_2}$$

exists.

- a) Show that $\partial_x k(x_0, \cdot) \in \mathcal{N}_k$ for any $x_0 \in \Omega$. **Hint:** Consider the sequence $f_n(y) = \frac{k(x_0+h_n,y)-k(x_0,y)}{h_n}$ for $h_n \to 0$.
- b) Show that any function $g \in \mathcal{N}_k$ has a first derivative g' and $g'(x_0) = \langle g, \partial_x k(x_0, \cdot) \rangle$.

Solution.

a) For a sequence $(h_n)_{n \in \mathbb{N}}$ with $h_n \to 0$, consider

$$f_n(y) = \frac{k(x+h_n, y) - k(x, y)}{h_n} \in \mathcal{N}_k.$$

Obviously, we have pointwise $\lim_{n\to\infty} f_n(y) = \partial_x k(x, y)$. Thus, we have to show that $f_n \to \partial_x k(x, \cdot)$ also in \mathcal{N}_k .

By assumption,

$$\lim_{n,m \to \infty} \langle f_n, f_m \rangle_k = \lim_{n,m \to \infty} \frac{k(x+h_n, x+h_m) - k(x+h_n, x) - k(x, x+h_m) + k(x, x)}{h_n h_m} = c$$

for some $c \geq 0$. But then

$$\lim_{n,m\to\infty} \|f_n - f_m\|_k^2 = \lim_{n,m\to\infty} \langle f_n, f_n \rangle_k - 2\langle f_n, f_m \rangle_k + \langle f_m, f_m \rangle_k = 0$$

and $(f_n)_{n\in\mathbb{N}}$ is Cauchy sequence in \mathcal{N}_k with limit $f^* = \lim_{n\to\infty} f_n \in \mathcal{N}_k$. But then

$$f^*(y) = \langle f^*, k(y, \cdot) \rangle_k = \lim_{n \to \infty} \langle f_n, k(y, \cdot) \rangle_k = \lim_{n \to \infty} f_n(y) = \partial_x k(x, y).$$

b) Since $|\langle g, \partial_x k(x, \cdot) \rangle_k| \le ||g||_k ||\partial_x k(x, \cdot)||_k < \infty$, the limit

$$\left|\lim_{n \to \infty} \frac{g(x_0 + h_n) - g(x_0)}{h_n}\right| = \left|\lim_{n \to \infty} \langle g, f_n \rangle_k\right| = \left|\langle g, \partial_x k(x_0, \cdot) \rangle\right|$$

exists. Consequently, $g'(x_0)$ exists and is simply given by $g'(x_0) = \langle g, \partial_x k(x_0, \cdot) \rangle$.