V4E2 - Numerical Simulation

Sommersemester 2017
Prof. Dr. J. Garcke
G. Byrenheid

Exercise sheet 1.

To be handed in on Thursday, 27.4.2017.
Let $H: \mathbb{R}^{d} \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a Hamiltonian and $\Omega \subset \mathbb{R}^{d}$ be an open domain. We consider the problem

$$
H(x, u, D u)=0, \quad \forall x \in \Omega
$$

The definition of viscosity solution for this problem was given in the lecture.
Exercise 1. Check that

$$
u(x)=\left\{\begin{array}{lll}
x & , \quad 0<x \leq \frac{1}{2} \\
1-x & , \quad \frac{1}{2}<x<1
\end{array}\right.
$$

is a viscosity solution of $H(x, u, D u):=\left|u^{\prime}(x)\right|-1=0, x \in(0,1)$. Is u a viscosity solution of $-\left|u^{\prime}(x)\right|+1=0$ in $(0,1) ?$
(4 Punkte)
Exercise 2. Prove: Let $v \in C(\Omega)$ and suppose that $x_{0} \in \Omega$ is a strict maximum point for v in $\bar{B}\left(x_{0}, \delta\right) \subset \Omega$. If $v_{n} \in C(\Omega)$ converges locally uniformly to v in Ω, then there exists a sequence $\left\{x_{n}\right\}$ such that

$$
x_{n} \rightarrow x_{0}, \quad v_{n}\left(x_{n}\right) \geq v_{n}(x) \quad \forall x \in \bar{B}\left(x_{0}, \delta\right)
$$

(4 Punkte)
An alternative way defining viscosity solutions is provided with the help of sub- and superdifferentials. In the first exercise we will give some details on that issue.

Definition 1. Let Ω be an open set in \mathbb{R}^{d} and $v: \Omega \rightarrow \mathbb{R}$. The super-differential $D^{+} v(x)$ of v at $x \in \Omega$, is defined as the set

$$
D^{+} v(x):=\left\{p \in \mathbb{R}^{d}: \limsup _{\substack{y \rightarrow x \\ y \in \Omega}} \frac{v(y)-v(x)-p \cdot(y-x)}{|y-x|} \leq 0\right\}
$$

The sub-differential $D^{-} v(x)$ of v at $x \in \Omega$, is defined as the set:

$$
D^{-} v(x):=\left\{q \in \mathbb{R}^{d}: \liminf _{\substack{y \rightarrow x \\ y \in \Omega}} \frac{v(y)-v(x)-q \cdot(y-x)}{|y-x|} \geq 0\right\}
$$

Exercise 3. a) Let

$$
v_{1}(x):=|x| .
$$

Compute $D^{+} v_{1}(0)$ and $D^{-} v_{1}(0)$.
b) Let

$$
v_{2}(x):= \begin{cases}0 & , \quad x \leq 0 \\ \frac{1}{2} b x^{2}+a x & , \quad x>0\end{cases}
$$

Compute $D^{+} v_{2}(0)$.

Exercise 4. Prove: If $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex (i.e. $u(\lambda x+(1-\lambda) y) \leq \lambda u(x)+(1-\lambda) u(y)$, for any $x, y \in \mathbb{R}, \lambda \in[0,1])$, then its sub-differential at x in the sense of convex analysis is the set

$$
\partial_{c} u(x):=\left\{p \in \mathbb{R}^{d}: u(y) \geq u(x)+p \cdot(y-x), \forall y \in \mathbb{R}^{d}\right\} .
$$

Show that if u is convex then $\partial_{c} u(x)=D^{-} u(x)$.
(4 Punkte)

