

•

V4E2 - Numerical Simulation

Sommersemester 2017 Prof. Dr. J. Garcke G. Byrenheid

Exercise sheet 10.

To be handed in on Thursday, 13.07.2017.

The infinite horizon problem

Let y_x denote the unique solution of the Cauchy problem

$$\begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) \\ y(0) = x. \end{cases}$$

We aim to minimize the cost

$$J(x,\alpha) := \int_0^\infty \ell(y_x(t),\alpha(t))e^{-\lambda t}dt.$$

For that purpose we define the value function as

$$v(x) := \inf_{\alpha \in \mathcal{A}} J(x, \alpha).$$

Prerequisites

Let $A \subset \mathbb{R}^M$ compact.

 (A_0)

$$\begin{cases} A \text{ is a topological space,} \\ f : \mathbb{R}^N \times A \to \mathbb{R}^N \text{ is continuous,} \end{cases}$$

- (A_1) f is bounded on $B(0, R) \times A$ for all R > 0,
- (A_2) there is a modulus ω_f such that

$$|f(y,a) - f(x,a)| \le \omega_f(|x-y|, R),$$

for all $x, y \in B(0, R)$ and R > 0.

 (A_3)

$$(f(x,a) - f(y,a)) \cdot (x-y) \le L|x-y|^2$$
 for all $x, y \in \mathbb{R}^N, a \in A$.

 $(A_4) \bullet \ell$ is continuous,

• there are modulus ω_{ℓ} and a constant M such that

$$|\ell(x,a) - \ell(y,a)| \le \omega_{\ell}(|x-y|)$$

and

$$|\ell(x,a)| \le M_i$$

for all $x, y \in \mathbb{R}^N$ and $a \in A$,

•
$$\lambda > 0$$

Exercises

Exercise 1. (Variable interest rate)

Let $\lambda : \mathbb{R}^N \times A \to \mathbb{R}$ satisfy $0 < \lambda_0 \leq \lambda(x, a) \leq M'$ and $|\lambda(x, a) - \lambda(y, a)| \leq \omega_\lambda(|x - y|)$, where ω_λ is a modulus, for all $x, y \in \mathbb{R}^N$ and $a \in A$. Consider the payoff

$$J(x,a) := \int_0^\infty \exp\Big(-\int_0^t \lambda(y_x(s),\alpha(s))ds\Big)\ell(y_x(t),\alpha(t))dt$$

under the hypotheses $(A_0) - (A_4)$.

(i) Prove that the value function $v = \inf_{\alpha} J$ satisfies the following DPP:

$$v(x) = \inf_{\alpha \in \mathcal{A}} \left\{ \int_0^t \ell(y_x(s), \alpha(s)) \exp\left(-\int_0^s \lambda(y_x(\tau), \alpha(\tau)) d\tau\right) + v(y_x(t)) \exp\left(-\int_0^t \lambda(y_x(\tau), \alpha(\tau)) d\tau\right) \right\}$$

(ii) Prove that v is a viscosity solution of

$$\sup_{a \in A} \{\lambda(x, a)v - f(x, a) \cdot Dv - \ell(x, a)\} = 0, \quad x \in \mathbb{R}^N.$$
(6 Punkte)

Convergence of more general approximation schemes

We denote upper semicontinuous and lower semicontinuous envelopes of a real valued function \boldsymbol{u} by

$$u^*(x) = \limsup_{y \to x} u(y)$$
 and $u_*(x) = \liminf_{y \to x} u(y).$

Definition 1. • u is a viscosity sub-solution of H(x, u, Du) = 0 in Ω if for all functions $\varphi \in C^1(\Omega)$, for all $x \in \Omega$, local maximum of $u^* - \varphi$ such that $u^*(x) = \varphi(x)$, we have:

$$H_*(x,\varphi(x),D\varphi(x)) \le 0$$

• u is a viscosity super-solution of H(x, u, Du) = 0 in Ω if for all functions $\varphi \in C^1(\Omega)$, for all $x \in \Omega$, local minimum of $u_* - \varphi$ such that $u_*(x) = \varphi(x)$, we have:

$$H^*(x,\varphi(x),D\varphi(x)) \ge 0$$

As in the lecture we assume Ω as a bounded polyhedral domain. Let

$$\Omega_h := h \mathbb{Z}^d \cap \Omega$$

be a space discretization with parameter h. We are interested in the HJB equation

$$H(x, u, Du) = 0, \quad \forall x \in \Omega$$

with

$$u(x) \le b(x), \quad \forall x \in \partial \Omega$$

associated to the Hamiltonian

$$H(x, u, a) := \sup_{a \in A} (-f(x, a) \cdot Du(x) - \ell(x, a)).$$

It is well known that under certain conditions a unique viscosity solution of the equation above is provided by the value function v.

Let S_h be an operator on the space of bounded functions on Ω_h . We are concerned with the convergence of the solution v_h to the dynamic programming equation:

$$v_h(x_i) = S_h[v_h](x_i), \quad \text{for } x_i \in \Omega_h \tag{1}$$

with the boundary condition

$$v_h(x_i) \le b(x_i) \quad \text{for } x_i \in \partial \Omega_h$$

$$\tag{2}$$

Exercise 2. Assume Lipschitz continuity of f in the space variable. Furthermore assume the corresponding value function as continuous in Ω . We make the following additional assumptions on S_h :

- (i) Monotonicity: if $v_1 \leq v_2$ then $S_h[v_1] \leq S_h[v_2]$
- (ii) For any constant c (approximately invariant w.r.t. addition of constants),

$$S_h[v+c] = S_h[v] + c(1+O(h))$$

(iii) Consistency in the form of:

$$\lim_{(x_i)_h \xrightarrow{h \to 0} x} \frac{1}{h} [v - S_h[v]]((x_i)_h) = H(x, v(x), Dv(x)).$$

Prove that S_h is a convergent approximation scheme, i.e. the solutions v_h of (1) and (2) satisfy

$$\lim_{(x_i)_h \xrightarrow{h \to 0} x} v_h((x_i)_h) = v(x)$$

uniformly.

Hints: Define the largest and smallest limit functions

$$v_{\sup} := \limsup_{\xi \xrightarrow{h \to 0} x} v_h(\xi)$$

and

$$v_{\inf} := \liminf_{\xi \xrightarrow{h \to 0} x} v_h(\xi).$$

Prove that they are respectively sub- and super viscosity solutions. W.l.o.g. assume the extrema to be a global one. Finally use the following comparison result:

Lemma 1. Under the assumptions above the HJB equation has a weak comparison principle, i.e. for any viscosity sub-solution \underline{u} and super-solution \overline{u} and for all $x \in \Omega$ we have:

$$\underline{u}(x) \le \overline{u}(x)$$