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The infinite horizon problem

Let yx denote the unique solution of the Cauchy problem{
ẏ(s) = f(y(s), α(s))

y(0) = x.

We aim to minimize the cost

J(x, α) :=

∫ ∞
0

`(yx(t), α(t))e−λtdt.

For that purpose we define the value function as

v(x) := inf
α∈A

J(x, α).

Prerequisites

Let A ⊂ RM compact.

(A0) {
A is a topological space,

f : RN ×A→ RN is continuous,

(A1) f is bounded on B(0, R)×A for all R > 0,

(A2) there is a modulus ωf such that

|f(y, a)− f(x, a)| ≤ ωf (|x− y|, R),

for all x, y ∈ B(0, R) and R > 0.

(A3)
(f(x, a)− f(y, a)) · (x− y) ≤ L|x− y|2 for all x, y ∈ RN , a ∈ A.

(A4) • ` is continuous,

• there are modulus ω` and a constant M such that

|`(x, a)− `(y, a)| ≤ ω`(|x− y|)

and
|`(x, a)| ≤M,

for all x, y ∈ RN and a ∈ A,

• λ > 0
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Exercises

Exercise 1. (Variable interest rate)

Let λ : RN ×A→ R satisfy 0 < λ0 ≤ λ(x, a) ≤M ′ and |λ(x, a)− λ(y, a)| ≤ ωλ(|x− y|), where
ωλ is a modulus, for all x, y ∈ RN and a ∈ A. Consider the payoff

J(x, a) :=

∫ ∞
0

exp
(
−
∫ t

0
λ(yx(s), α(s))ds

)
`(yx(t), α(t))dt

under the hypotheses (A0)− (A4).

(i) Prove that the value function v = infα J satisfies the following DPP:

v(x) = inf
α∈A

{∫ t

0
`(yx(s), α(s)) exp

(
−
∫ s

0
λ(yx(τ), α(τ))dτ

)
+v(yx(t)) exp

(
−
∫ t

0
λ(yx(τ), α(τ))dτ

)}
.

(ii) Prove that v is a viscosity solution of

sup
a∈A
{λ(x, a)v − f(x, a) ·Dv − `(x, a)} = 0, x ∈ RN .

(6 Punkte)

Convergence of more general approximation schemes

We denote upper semicontinuous and lower semicontinuous envelopes of a real valued function
u by

u∗(x) = lim sup
y→x

u(y) and u∗(x) = lim inf
y→x

u(y).

Definition 1. • u is a viscosity sub-solution of H(x, u,Du) = 0 in Ω if for all functions
ϕ ∈ C1(Ω), for all x ∈ Ω, local maximum of u∗ − ϕ such that u∗(x) = ϕ(x), we have:

H∗(x, ϕ(x), Dϕ(x)) ≤ 0

• u is a viscosity super-solution of H(x, u,Du) = 0 in Ω if for all functions ϕ ∈ C1(Ω), for
all x ∈ Ω, local minimum of u∗ − ϕ such that u∗(x) = ϕ(x), we have:

H∗(x, ϕ(x), Dϕ(x)) ≥ 0

As in the lecture we assume Ω as a bounded polyhedral domain. Let

Ωh := hZd ∩ Ω

be a space discretization with parameter h. We are interested in the HJB equation

H(x, u,Du) = 0, ∀x ∈ Ω

with
u(x) ≤ b(x), ∀x ∈ ∂Ω

associated to the Hamiltonian

H(x, u, a) := sup
a∈A

(−f(x, a) ·Du(x)− `(x, a)).

It is well known that under certain conditions a unique viscosity solution of the equation above
is provided by the value function v.
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Let Sh be an operator on the space of bounded functions on Ωh. We are concerned with the
convergence of the solution vh to the dynamic progamming equation:

vh(xi) = Sh[vh](xi), for xi ∈ Ωh (1)

with the boundary condition

vh(xi) ≤ b(xi) for xi ∈ ∂Ωh (2)

Exercise 2. Assume Lipschitz continuity of f in the space variable. Furthermore assume the
corresponding value function as continuous in Ω. We make the following additional assumptions
on Sh :

(i) Monotonicity: if v1 ≤ v2 then Sh[v1] ≤ Sh[v2]

(ii) For any constant c (approximately invariant w.r.t. addition of constants),

Sh[v + c] = Sh[v] + c(1 +O(h))

(iii) Consistency in the form of:

lim
(xi)h

h→0−−−→x

1

h
[v − Sh[v]]((xi)h) = H(x, v(x), Dv(x)).

Prove that Sh is a convergent approximation scheme, i.e. the solutions vh of (1) and (2) satisfy

lim
(xi)h

h→0−−−→x

vh((xi)h) = v(x)

uniformly.

Hints: Define the largest and smallest limit functions

vsup := lim sup

ξ
h→0−−−→x

vh(ξ)

and
vinf := lim inf

ξ
h→0−−−→x

vh(ξ).

Prove that they are respectively sub- and super viscosity solutions. W.l.o.g. assume the extrema
to be a global one. Finally use the following comparison result:

Lemma 1. Under the assumptions above the HJB equation has a weak comparison principle,
i.e. for any viscosity sub-solution u and super-solution u and for all x ∈ Ω we have:

u(x) ≤ u(x).
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