

## V4E2 - Numerical Simulation

Sommersemester 2017 Prof. Dr. J. Garcke G. Byrenheid



## Exercise sheet 2.

To be handed in on Thursday, 04.05.2017.

Let  $H: \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$  be a Hamiltonian and  $\Omega \subset \mathbb{R}^d$  be an open domain. We consider the problem

$$H(x, u, Du) = 0, \quad \forall x \in \Omega.$$
(1)

We assume

- [A1]  $H(\cdot, \cdot, \cdot)$  is uniformly continuous on  $\Omega \times \mathbb{R} \times \mathbb{R}^d$
- [A2]  $H(x, u, \cdot)$  is convex on  $\mathbb{R}^d$
- [A3]  $H(x, \cdot, p)$  is monotone on  $\mathbb{R}$ .

**Exercise 1.** Show by a density argument that an equivalent definition of viscosity solution for (1) can be given by using  $C^{\infty}(\Omega)$  instead of  $C^{1}(\Omega)$  as the 'test function space'. (Hint: Friedrichs mollifier)

(4 Punkte)

**Exercise 2.** Show by exhibiting an example that is false in general that if u, v are viscosity solutions of (1) the same is true for  $u \wedge v, u \vee v$ .

(4 Punkte)

**Exercise 3.** Suppose that the equation  $H_n(x, u_n(x), Du_n(x)) = 0$  has a classical solution  $u_n \in C^1(\Omega)$  for  $n = 1, 2, \ldots$  Show that, under the assumptions of Proposition 6,  $u = \lim_{n \to \infty} u_n$  is a viscosity solution of

$$-H(x, u(x), Du(x)) = 0.$$

(4 Punkte)

(\*) Solve one of the following exercises. By solving the second one you can earn extra points.

**Exercise 4.** Let  $H(x, p) = \sup_{\alpha \in A} \{-f(x, a) \cdot p - \ell(x, a)\}$ , with A compact, f and  $\ell$  continuous. Assume also that, for all x, y

$$|f(x,a) - f(y,a)| \le L|x-y|, \quad |\ell(x,a) - \ell(y,a)| \le \omega(|x-y|)$$

where the constant L and the modulus  $\omega$  are independent of  $a \in A$ . Show that H satisfies

$$|H(x,p) - H(y,p)| \le \omega_1(|x-y|(1+|p|)).$$

 $(\omega_1: [0, +\infty[ \rightarrow [0, +\infty[$  is continuous nondecreasing with  $\omega_1(0) = 0).$ 

(4\* Punkte)

**Exercise 5.** Take  $H(x,p) = \sup_{a \in A} \{-f(x,a) \cdot p - \ell(x,a)\}$  with f continuous on  $\mathbb{R}^N \times A$ . Assume also that

$$\exists r > 0 : B(0, r) \subseteq \overline{co}f(x, A), \quad \forall x \in \mathbb{R}^N$$

holds. Show that

$$\sup_{a \in A} \{-f(x,a) \cdot p\} = \sup_{\xi \in \overline{co}f(x,A)} \{-\xi \cdot p\} \ge r|p|.$$

Prove than that H satisfies the coercivity condition

$$H(x,p) \to +\infty$$
 as  $|p| \to +\infty$ 

provided  $\ell$  is bounded.

 $(4^* \text{Punkte})$