

•

V4E2 - Numerical Simulation

Sommersemester 2017 Prof. Dr. J. Garcke G. Byrenheid

Exercise sheet 3.

To be handed in on Thursday, 11.05.2017.

Exercise 1. Prove: The result of Theorem 7 remains true if assumption (A4) is replaced by the coercivity condition

$$r + H(x, p) \to +\infty$$
 as $|p| \to +\infty$,

uniformly with respect to $x \in \overline{\Omega}$, |r| < R, $(\forall R > 0)$. Update: Assume additionally $H \in C(\overline{\Omega} \times \mathbb{R}^d)$. Hint: Modify the end of the proof of Theorem 7. Observe that the inequality

$$u_1(x_{\varepsilon}) + H\left(x_{\varepsilon}, \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}\right) \le 0$$

in the proof of Theorem 7 and coercivity imply that $|(x_{\varepsilon} - y_{\varepsilon})/\varepsilon|$ is uniformly bounded as $\varepsilon \to 0^+$.

(4 Punkte)

Let $L: \mathbb{R}^n \to \mathbb{R}$ be a Lagrangian with

- (i) $v \to L(v)$ is convex,
- (ii) $\lim_{|v|\to\infty} \frac{L(v)}{|v|} = +\infty.$

We define u(x,t) by the Hopf-Lax formula as

$$u(x,t) := \min_{y \in \mathbb{R}^n} \Big\{ tL\Big(\frac{x-y}{t}\Big) + g(y) \Big\}.$$

Exercise 2. Prove: For each $x \in \mathbb{R}^n$ and $0 \le s < t$, we have

$$u(x,t) = \min_{y \in \mathbb{R}^n} \left\{ (t-s)L\left(\frac{x-y}{t-s}\right) + u(y,s) \right\}.$$

Hints for \leq :

• Fix $z \in \mathbb{R}^n$ such that:

$$u(y,s) = sL\left(\frac{x-z}{s}\right) + g(z),$$

• use convexity with

$$\frac{x-z}{t} = \left(1 - \frac{s}{t}\right)\frac{x-y}{t-s} + \frac{s}{t}\frac{y-z}{s},$$

• Use/assume the continuity of u.

We define the Legendre transform of L as

$$L^*(p) := \sup_{v \in \mathbb{R}^n} \{ p \cdot v - L(v) \}, \ (p \in \mathbb{R}^n).$$

The corresponding Hamiltonian is given by

$$H := L^*.$$

(6 Punkte)

Exercise 3. Prove:

- a) The mapping $p \to H(p)$ is convex,
- b) it fulfills the coercivity condition

$$\lim_{|v|\to\infty}\frac{H(v)}{|v|} = +\infty,$$

c) $L = H^*$.

Hints for c):

- $L \ge H^*$: elementary,
- $L \leq H^*$:

$$H^*(v) = \sup_{p \in \mathbb{R}^n} \{ p \cdot v - \sup_{r \in \mathbb{R}^n} \{ p \cdot r - L(r) \} \}$$

convexity of L implies

$$\exists s \in \mathbb{R}^n : \quad L(r) \ge L(v) + s \cdot (r - v).$$

(6 Punkte)