V4E2 - Numerical Simulation

Sommersemester 2017
Prof. Dr. J. Garcke
G. Byrenheid

Exercise sheet 7.

We consider the linear advection equation in one space dimension with constant coefficient $c>0$

$$
\begin{equation*}
u_{t}(x, t)+c u_{x}(x, t)=0, \quad u(x, 0)=u_{0}(x) \tag{1}
\end{equation*}
$$

The exact solution of the discretized equations (finite differences) satisfies a PDE which is generally different from the one to be solved

$$
\begin{array}{r}
\text { Original equation } \\
\frac{\partial u}{\partial t}+\mathcal{L} u=0
\end{array} \quad \begin{aligned}
& \text { Modified equation solved by } u^{n+1}=S\left(\Delta, u^{n}\right) \\
& \partial t \\
&
\end{aligned}
$$

Exercise 1. (i) Prove that the numerical solution of (1) by the upwind scheme

$$
\frac{u_{j}^{i+1}-u_{j}^{i}}{\Delta t}+c \frac{u_{j}^{i}-u_{j-1}^{i}}{\Delta x}=0
$$

corresponds to a solution of

$$
u_{t}+c u_{x}=\frac{c \Delta x}{2}(1-\lambda) \frac{\partial^{2} u}{\partial x^{2}}+\frac{c(\Delta x)^{2}}{6}\left(3 \lambda-2 \lambda^{2}-1\right) \frac{\partial^{3} u}{\partial x^{3}}+\ldots
$$

where $\lambda=\frac{c \Delta t}{\Delta x}$ and \ldots contains derivatives of order >3. Hints:

- Expand all nodal values in the difference scheme in a double Taylor series about a single point $\left(x_{i}, t_{j}\right)$ of the space-time mesh to obtain a PDE
- Express high-order time derivatives as well as mixed derivatives in terms of space derivatives using this PDE to transform it into the desired form
(ii) We set $c=1$. Consider the initial condition

$$
u_{0}(x)= \begin{cases}1 & -1 \leq x \leq 0 \\ 0 & \text { elsewhere }\end{cases}
$$

where we use for the difference scheme

$$
u_{i}^{0}= \begin{cases}1 & -1 \leq i \Delta x \leq 0 \\ 0 & \text { elsewhere }\end{cases}
$$

Implement the upwind scheme for suitable parameters $0<\lambda=\frac{\Delta t}{\Delta x} \leq 1$ in a suitable domain (cf. analytic solution). At the left boundary set the newly computed $u_{j^{*}}^{i+1}=u_{j^{*}+1}^{i+1}$ $(=0)$. As known from Sheet 6 , Ex. 1 an analytic solution is given by $u(x, t)=u_{0}(x-c t)$. What qualitative effects do you observe comparing numerical and analytic solution over time?
(iii) Compare this qualitative effects with that which appear using the Lax-Friedrichs scheme

$$
\frac{u_{j}^{i+1}-u_{j}^{i}}{\Delta t}+\frac{u_{j+1}^{i}-u_{j-1}^{i}}{2 \Delta x}=0 .
$$

For a sufficient large domain assume similar to (ii) $u^{i+1}=0$ for the left and right boundary.
(10 Punkte)
Exercise 2. In the lecture the upwind scheme $S(\Delta, V)$ for the convex Hamilton-Jacobi equation was introduced. Prove monotonicity of the upwind scheme by showing $\frac{\partial}{\partial v_{i}} S_{j}(\Delta, V) \geq 0$.
(6 Punkte)
Exercise 3. On Sheet 6, Exercise 1 a misprint appeared in the representation of the scheme. The correct scheme has the presentation

$$
0=\frac{v_{i}^{j+1}-v_{i}^{j}}{\Delta t}+c \frac{v_{i+1}^{j}-v_{i}^{j}}{\Delta x} .
$$

Since this misprint caused trouble for some students you can reinsert Exercise 1 together with this sheet. If you insert a new solution then only this will be rated.

In general: if questions appear, do not hestiate to ask the tutor or contact glenn.byrenheid@hcm.uni-bonn.de.

