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We consider the linear advection equation in one space dimension with constant coefficient
c > 0

ut(x, t) + cux(x, t) = 0, u(x, 0) = u0(x). (1)

The exact solution of the discretized equations (finite differences) satisfies a PDE which is
generally different from the one to be solved

Original equation Modified equation solved by un+1 = S(∆, un)

∂u

∂t
+ Lu = 0 ∼ ∂u

∂t
+ Lu =

∞∑
p=1

α2p
∂2pu

∂x2p
+
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α2p+1
∂2p+1u

∂x2p+1

Exercise 1. (i) Prove that the numerical solution of (1) by the upwind scheme

ui+1
j − uij

∆t
+ c

uij − uij−1

∆x
= 0

corresponds to a solution of

ut + cux =
c∆x

2
(1− λ)

∂2u

∂x2
+
c(∆x)2

6
(3λ− 2λ2 − 1)

∂3u

∂x3
+ . . .

where λ = c∆t
∆x and . . . contains derivatives of order > 3. Hints:

• Expand all nodal values in the difference scheme in a double Taylor series about a
single point (xi, tj) of the space-time mesh to obtain a PDE

• Express high-order time derivatives as well as mixed derivatives in terms of space
derivatives using this PDE to transform it into the desired form

(ii) We set c = 1. Consider the initial condition

u0(x) =

{
1 −1 ≤ x ≤ 0,

0 elsewhere,

where we use for the difference scheme

u0
i =

{
1 −1 ≤ i∆x ≤ 0,

0 elsewhere.

Implement the upwind scheme for suitable parameters 0 < λ = ∆t
∆x ≤ 1 in a suitable

domain (cf. analytic solution). At the left boundary set the newly computed ui+1
j∗ = ui+1

j∗+1

(= 0). As known from Sheet 6, Ex. 1 an analytic solution is given by u(x, t) = u0(x− ct).
What qualitative effects do you observe comparing numerical and analytic solution over
time?
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(iii) Compare this qualitative effects with that which appear using the Lax-Friedrichs scheme

ui+1
j − uij

∆t
+
uij+1 − uij−1

2∆x
= 0.

For a sufficient large domain assume similar to (ii) ui+1 = 0 for the left and right
boundary.

(10 Punkte)

Exercise 2. In the lecture the upwind scheme S(∆, V ) for the convex Hamilton-Jacobi equa-
tion was introduced. Prove monotonicity of the upwind scheme by showing ∂

∂vi
Sj(∆, V ) ≥ 0.

(6 Punkte)

Exercise 3. On Sheet 6, Exercise 1 a misprint appeared in the representation of the scheme.
The correct scheme has the presentation

0 =
vj+1
i − vji

∆t
+ c

vji+1 − v
j
i

∆x
.

Since this misprint caused trouble for some students you can reinsert Exercise 1 together with
this sheet. If you insert a new solution then only this will be rated.

In general: if questions appear, do not hestiate to ask the tutor or contact
glenn.byrenheid@hcm.uni-bonn.de.
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