

V4E2 - Numerical Simulation

Sommersemester 2017 Prof. Dr. J. Garcke G. Byrenheid

Exercise sheet 8.

To be handed in on Tuesday, 27.06.2017.

The minimum time problem

Description of the problem

We study problems with initial state $x \in \mathcal{T}^c := \mathbb{R}^N \setminus \mathcal{T}$, whose dynamics

$$\begin{cases} y'(t) = f(y(t), \alpha(t)), \ t > 0, \\ y(0) = x, \end{cases}$$

is stopped and the payoff computed when the system reaches the closed set \mathcal{T} , where int $\mathcal{T} \neq \emptyset$, $\partial \mathcal{T}$ is sufficiently regular. We are interested in the minimal time function

$$T(x) := \inf_{\alpha \in \mathcal{A}} t_x(\alpha)$$

where the first time of arrival is defined by

$$t_x(\alpha) := \begin{cases} +\infty & \text{if } \{t : y_x(t, \alpha) \in \mathcal{T}\} = \emptyset, \\ \inf\{t : y_x(t, \alpha) \in \mathcal{T}\} & \text{otherwise.} \end{cases}$$

Additionally we define the reachable set as

$$\mathcal{R} := \{ x \in \mathbb{R}^N : T(x) < +\infty \},\$$

which describes the set of initial states from which it is possible to reach the target \mathcal{T} .

Further prerequisites

Let $A \subset \mathbb{R}^M$ compact.

 (A_0)

$$f: \mathbb{R}^N \times A \to \mathbb{R}^N$$
 is continuous,

 (A_3)

$$(f(x,a) - f(y,a)) \cdot (x-y) \le L|x-y|^2 \text{ for all } x, y \in \mathbb{R}^N, a \in A.$$

Exercises

Exercise 1. (Dynamic Programming Principle)

Prove: Assume (A_0) , (A_3) . Then, for all $x \in \mathcal{R}$,

$$T(x) = \inf_{\alpha \in \mathcal{A}} \{\min\{t, t_x(\alpha)\} + \chi_{\{t \le t_x(\alpha)\}} T(y_x(t, \alpha))\},\$$

for all $t \ge 0$ and

$$T(x) = \inf_{\alpha \in \mathcal{A}} \{ t + T(y_x(t, \alpha)) \},\$$

for all $t \in [0, T(x)]$.

Exercise 2. Let a function $S : \mathbb{R}^N \to [0, +\infty]$ satisfy the Dynamic Programming Principle (DPP) at given point $x \in \mathcal{R}$, that is

$$S(x) = \inf_{\alpha \in \mathcal{A}} \{ t \wedge t_x(\alpha) + \chi_{\{t \le t_x(\alpha)\}} S(y_x(t,\alpha)) \}, \text{ for all } t \ge 0.$$

Prove that S(x) = T(x).

(6 Punkte)

Exercise 3. Prove: If $\mathcal{R} \setminus \mathcal{T}$ is open and T is continuous, then T is a viscosity solution of

$$\begin{cases} H(x, DT(x)) = 0, & x \in \mathcal{R} \backslash \mathcal{T}, \\ T(x) = 0, & x \in \partial \mathcal{T}, \end{cases}$$

where

$$H(x,p) := \sup_{\alpha \in A} \{-p \cdot f(x,a)\} - 1.$$

Hints:

- Ignore/skip the boundary condition.
- Apply the DPP.

(6 Punkte)