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The minimum time problem

Description of the problem

We study problems with inital state x ∈ T c := RN\T , whose dynamics{
y′(t) = f(y(t), α(t)), t > 0,

y(0) = x,

is stopped and the payoff computed when the system reaches the closed set T , where int T 6= ∅,
∂T is sufficiently regular. We are interested in the minimal time function

T (x) := inf
α∈A

tx(α)

where the first time of arrival is defined by

tx(α) :=

{
+∞ if {t : yx(t, α) ∈ T } = ∅,
inf{t : yx(t, α) ∈ T } otherwise.

Additionally we define the reachable set as

R := {x ∈ RN : T (x) < +∞},

which describes the set of initial states from which it is possible to reach the target T .

Further prerequisites

Let A ⊂ RM compact.

(A0)
f : RN ×A→ RN is continuous,

(A3)
(f(x, a)− f(y, a)) · (x− y) ≤ L|x− y|2 for all x, y ∈ RN , a ∈ A.

Exercises

Exercise 1. (Dynamic Programming Principle)

Prove: Assume (A0), (A3). Then, for all x ∈ R,

T (x) = inf
α∈A
{min{t, tx(α)}+ χ{t≤tx(α)}T (yx(t, α))},

for all t ≥ 0 and
T (x) = inf

α∈A
{t+ T (yx(t, α))},

for all t ∈ [0, T (x)].
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(6 Punkte)

Exercise 2. Let a function S : RN → [0,+∞] satisfy the Dynamic Programming Principle
(DPP) at given point x ∈ R, that is

S(x) = inf
α∈A
{t ∧ tx(α) + χ{t≤tx(α)}S(yx(t, α))}, for all t ≥ 0.

Prove that S(x) = T (x).

(6 Punkte)

Exercise 3. Prove: If R\T is open and T is continuous, then T is is a viscosity solution of{
H(x,DT (x)) = 0, x ∈ R\T ,
T (x) = 0, x ∈ ∂T ,

where
H(x, p) := sup

α∈A
{−p · f(x, a)} − 1.

Hints:

• Ignore/skip the boundary condition.

• Apply the DPP.

(6 Punkte)
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