Scientific Computing 2

Summer term 2017
Prof. Dr. Ira Neitzel
Christopher Kacwin

Sheet 0

Exercise 1. (minimization/maximization problems)
Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $X \subset \mathbb{R}^{n}$ nonempty. Show that the set of solutions to

$$
\max _{x \in X} f(x)
$$

and

$$
\min _{x \in X}(-f(x))
$$

are identical.

Exercise 2. (sublevel sets)

Consider the functions

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad\binom{x}{y} \mapsto x^{2}-y^{2}
$$

and

$$
g: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad\binom{x}{y} \mapsto x^{2}+y^{2}
$$

a) Draw the level sets of f and g. Do they attain their minima/maxima on $D:=\{(x, y) \in$ $\left.\mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$? Add them to your drawings.
b) Show that a continuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $\lim _{\|x\| \rightarrow \infty} f(x)=\infty$ has compact sublevel sets $\mathcal{N}_{f}(w)=\left\{x \in \mathbb{R}^{n} \mid f(x) \leq w\right\}$.
c) Show that convex functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ have convex sublevel sets. Does the converse also hold true?

Exercise 3. (linear regression)
a) Let $A \in \mathbb{R}^{m, n}$ with $m>n$ and $\operatorname{rang} A=n, b \in \mathbb{R}^{m}$ and consider

$$
\begin{equation*}
f: \mathbb{R}^{n} \mapsto \mathbb{R}, \quad f(x)=\frac{1}{2}\|A x-b\|_{2}^{2} \tag{1}
\end{equation*}
$$

Assume that the QR -decomposition $A=Q R$ is known, where $Q \in \mathbb{R}^{m, n}, Q^{T} Q=$ I_{n}, and $R \in \mathbb{R}^{n, n}$ is an upper triangular matrix.
Calculate an optimal solution to

$$
\min _{x \in \mathbb{R}^{2}} f(x) .
$$

b) Calculate the gradient and Hessian of f. Show that the Hessian is positive semidefinite, and further positive definite iff A is injective.
c) Formulate the linear regression problem in the form (1). show that for $m \in \mathbb{N}$ the matrix

$$
H=2\left(\begin{array}{cc}
\sum_{i=1}^{m} \xi_{i}^{2} & \sum_{i=1}^{m} \xi_{i} \\
\sum_{i=1}^{m} \xi_{i} & m
\end{array}\right)
$$

is positive definite if at least two of the ξ_{i} are different. Discuss the relation of A in (1) and H. Solve the linear regression model using the measurements:

$$
\begin{array}{c|ccccc}
\xi_{i} & -5 & -1 & 0 & 1 & 5 \\
\hline \eta_{i} & 1 & 4 & 5 & 6 & 9
\end{array}
$$

(0 points)

Exercise 4. (a test case)
Consider the following problem:
Find a point $x \in \mathbb{R}^{2}$ such that it minimizes the sum of distances to three given points $x_{1}, x_{2}, x_{3} \in \mathbb{R}^{2}$.
a) Formulate this problem as an optimization problem and show that a solution x^{*} exists. Is it unique?
b) Let $x^{*} \neq x_{i}, i=1 \ldots 3$. Characterize x^{*} with the first order necessary condition for optimality and geometrical considerations.

