Scientific Computing 2

Summer term 2017
Prof. Dr. Ira Neitzel
Christopher Kacwin

Sheet 1

Submission on Thursday, 27.4.2017.

Exercise 1. (multivariate quadratic polynomial)
Consider the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad f(x)=\frac{1}{2} x^{T} H x+b^{T} x+c$.
a) Calculate the gradient ∇f and Hessian $\nabla^{2} f$ for an arbitrary $H \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$, $c \in \mathbb{R}$ and for symmetric H.
b) Show that H can be replaced by a symmetric matrix without changing the objective function f.
c) Show that if H is positive definite, then f is strictly convex and $\lim _{\|x\| \rightarrow \infty} f(x)=\infty$.
d) Rewrite the function

$$
g\left(x_{1}, x_{2}\right)=5 x_{1}^{2}+5 x_{2}^{2}+8 x_{1} x_{2}-4 x_{1}-2 x_{2}+3
$$

as $g(x)=\frac{1}{2} x^{T} H x+b^{T} x+c$ with symmetric $H \in \mathbb{R}^{n \times n}$. Is H positive definite? If yes, what does this imply for existence and uniqueness of minima? Calculate the global minimum of g.
(6 points)
Exercise 2. (saddle point property)
Consider the minimization problem from the lecture:

$$
\begin{array}{r}
\min f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2} \\
x_{2} \leq x_{1}-1
\end{array}
$$

Derive the corresponding Lagrangian $L\left(x_{1}, x_{2}, \lambda\right)$. Show that the solution $\left(\overline{x_{1}}, \overline{x_{2}}, \bar{\lambda}\right)$ satisfies the saddle point property

$$
\begin{equation*}
L\left(\overline{x_{1}}, \overline{x_{2}}, \lambda\right) \leq L\left(\overline{x_{1}}, \overline{x_{2}}, \bar{\lambda}\right) \leq L\left(x_{1}, x_{2}, \bar{\lambda}\right) \quad \forall \lambda \geq 0, \forall x_{1}, x_{2} \tag{4points}
\end{equation*}
$$

Exercise 3. (3-norm)
Calculate all minima of $f\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{3}$ on the unit circle, using the Lagrange formalism.
(4 points)
Exercise 4. (parabolic graph)
Find the point lying on the parabolic graph $x_{1}^{2}-4 x_{2}=0$ which minimizes the euclidean distance to $(0,1)$. Try to solve this problem using Gaussian elimination.

- Eliminate x_{1}^{2}. What happens, and why?
- Eliminate x_{2} instead.

Afterwards, use the Lagrange formalism to solve this minimization problem.

