Scientific Computing 2

Summer term 2017
Prof. Dr. Ira Neitzel
Christopher Kacwin

Sheet 10

Submission on Thursday, 20.7.2017.

Exercise 1. (optimal control)
The goal of this exercise is to model a one-dimensional parabolic optimal control problem, discretize it and derive the corresponding Lagrange formulation.
We consider a metal rod and its temperature distribution

$$
y:[0,1] \times[0, T] \longrightarrow \mathbb{R}
$$

with initial condition $y(\cdot, 0)=y^{0}$. Additionally, we assume that we are able to control the heat flux of the metal rod at the end points. More precisely, we model $y(x, t)$ to satisfy the partial differential equation

$$
\begin{array}{rll}
y_{t}-y_{x x} & =f \quad \text { in }[0,1] \times[0, T] \\
-y_{x}(0, \cdot) & =u_{l} \quad \text { in }[0, T] \\
y_{x}(1, \cdot) & =u_{r} \quad \text { in }[0, T] \\
y(\cdot, 0) & =y^{0} \quad \text { in }[0,1]
\end{array}
$$

with control parameters $u_{l}(t), u_{r}(t)$ and additional enviromental influence $f(x, t)$ (material conditions, additional heat source...). The goal is to influence this temperature distribution such that at time T, it will be close to the desired end state y_{d}. This should be balanced with respect to the energy needed to advance from y^{0} to y_{d}. A cost functional to this problem can be stated as

$$
J\left(y, u_{l}, u_{r}\right)=\frac{1}{2}\left\|y(\cdot, T)-y_{d}\right\|_{L^{2}[0,1]}^{2}+\frac{\alpha}{2}\left(\left\|u_{l}\right\|_{L^{2}[0, T]}^{2}+\left\|u_{r}\right\|_{L^{2}[0, T]}^{2}\right)
$$

which we want to minimize with respect to some constraints on u_{l} and u_{r}.
As a first step, we want to do a spatial discretization of the partial differential equation. We interpret $y(x, t)=y(t)(x)=y(t) \in V$ (f likewise), where y is now a function of time mapping into a function space V, which consists of functions defined on $[0,1]$ (for instance $C[0,1]$). The finite-dimensional subspace $V_{h} \subset V$ with basis $\left\{\phi_{1}, \ldots, \phi_{m}\right\}$ is used to approximate $y(t)$ as

$$
y(t) \approx \sum_{i=1}^{m} \mathrm{y}_{i}(t) \phi_{i}
$$

with a time-dependent coefficient vector $\mathrm{y}(t) \in \mathbb{R}^{m}$.
a) Derive the spatially discretized weak formulation

$$
\begin{aligned}
M \mathrm{y}^{\prime}(t)+K \mathrm{y}(t) & =L(t), \quad t \in[0, T] \\
M \mathrm{y}(0) & =I .
\end{aligned}
$$

Here, $M \in \mathbb{R}^{m \times m}$ is the mass matrix with $M_{i j}=\int \phi_{i} \phi_{j}, K \in \mathbb{R}^{m \times m}$ is the stiffness matrix with $K_{i j}=\int\left(\phi_{i}\right)_{x}\left(\phi_{j}\right)_{x}, L(t) \in \mathbb{R}^{m}$ is the load vector with $L_{i}(t)=$ $\int f(t) \phi_{i}+\phi_{i}(0) u_{l}(t)+\phi_{i}(1) u_{r}(t)$, and $I \in \mathbb{R}^{m}$ are the initial conditions with $I_{i}=$ $\int y^{0} \phi_{i}$.

This is a vector-valued first order ODE with matrix coefficients. We continue with a time discretization. Introducing the time steps $t_{n}=n T / N$ for $n=0, \ldots, N$ with spacing $\tau=T / N$ we define $\underline{y}^{n}=\underline{y}\left(t_{n}\right), L^{n}=L\left(t_{n}\right)$.
b) Using the implicit Euler scheme, derive the space-time discretized formulation

$$
\begin{aligned}
(M+\tau K) \mathrm{y}^{n} & =M \mathrm{y}^{n-1}+\tau L^{n}, \quad n=1, \ldots, N \\
M \mathrm{y}^{0} & =I .
\end{aligned}
$$

State a block-matrix formulation that expresses $Y=\left[\mathrm{y}^{n}\right]_{n=1}^{N} \in\left(\mathbb{R}^{m}\right)^{N}$ as the solution of a linear system

$$
A Y=B
$$

c) State the discrete optimization problem using an appropiate discrete cost functional and justify your choice in a few words. Introduce the Lagrangian formalism for this problem using discrete Lagrangian multipliers \underline{p}^{n} for $n=1, \ldots, N$ (without restrictions for the control parameters).
d) State the KKT-conditions for the discrete optimization problem, with emphasis on the adjoint equations. Do these equations resemble a certain differential equation?
(20 points)

