Scientific Computing 2

Summer term 2017
Prof. Dr. Ira Neitzel
Christopher Kacwin

Sheet 2

Submission on Thursday, 4.5.2017.

Exercise 1. (variational inequality)
Let $X \subset \mathbb{R}^{n}$ be convex and $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a convex function which is continuously differentiable. Given the optimization problem

$$
\min _{x \in X} f(x),
$$

show that $x^{*} \in X$ is a solution iff the variational inequality

$$
\nabla f\left(x^{*}\right)^{\top}\left(x-x^{*}\right) \geq 0
$$

holds for all $x \in X$.

Exercise 2. (ACQ and GCQ)
Determine the tangential cone $T(X, x)$ and linearized tangential cone $T_{l}(g, x)$ for the feasible set $X=\{g(x) \leq 0\}$ and a given $x^{*} \in X$. Visualize your results. Furthermore, check if the Abadie-Constraint-Qualification and Guignard-Constraint-Qualification are satisfied.
a) $g(x)=\left(x_{2}-x_{1}^{5},-x_{2}\right)^{\top}, x^{*}=(0,0)^{\top}$
b) $g(x)=\left(x_{2}^{2}-x_{1}+1,1-x_{1}-x_{2}\right)^{\top}, x^{*}=(1,0)^{\top}$

Exercise 3. (Slater CQ)
Let $f, g_{1}, \ldots, g_{m} \in C^{1}\left(\mathbb{R}^{n}\right)$ be convex and $X=\left\{x \in \mathbb{R}^{n} \mid \forall i: g_{i}(x) \leq 0\right\}$ be the feasible set. For an optimization problem

$$
\min _{x \in X} f(x),
$$

X satisfies the Slater condition if there exists $y \in \mathbb{R}^{n}$ such that $g_{i}(y)<0$ for $i=1, \ldots, m$. Show that the Slater condition is a constraint qualification, i.e., the Guignard-ConstraintQualification is satisfied for all $x \in X$.
(6 points)
Exercise 4. (Cones)
Let K be a cone and K° its polar cone. Prove the following statements.
a) K is convex iff $K+K \subset K$.
b) K° is always convex and closed.
c) If K is convex and closed, it follows that $\left(K^{\circ}\right)^{\circ}=K$.

