Scientific Computing 2

Summer term 2017
Prof. Dr. Ira Neitzel
Christopher Kacwin

Sheet 3

Submission on Thursday, 11.5.2017.

Exercise 1. (KKT conditions)
Consider the optimization problem

$$
\min _{x \in \mathbb{R}^{2}} f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-2\right)^{2}
$$

with linear inequality constraints

$$
\begin{aligned}
g_{1}(x) & =x_{1}+x_{2}-1 \leq 0 \\
g_{2}(x) & =-x_{1} \leq 0 \\
g_{3}(x) & =-x_{2} \leq 0
\end{aligned}
$$

a) Show that every point in the feasible set is regular and find all points satisfying the KKT conditions. Afterwards, determine the solution x^{*} to the optimization problem and prove that it is unique.
b) We replace the first inequality constraint with $g_{1}(x)=\left(x_{1}+x_{2}-1\right)^{3} \leq 0$ (which leaves the feasible set unaffected). Show that x^{*} does not satisfy the KKT conditions anymore.

Exercise 2. (projection 1)
Let $C \subset \mathbb{R}^{n}$ be a convex, closed, nonempty set and $y \in \mathbb{R}^{n}$. Show that the optimization problem

$$
\min _{x \in c}\|x-y\|_{2}^{2}
$$

has a unique solution $P_{C}(y)$, and that $P_{C}: \mathbb{R}^{n} \rightarrow C$ is continuous with respect to euclidean distance. Furthermore, use the variational inequality to show the identity

$$
\left(P_{C}\left(y_{1}\right)-P_{C}\left(y_{2}\right)\right)^{\top}\left(y_{1}-y_{2}\right) \geq\left\|P_{C}\left(y_{1}\right)-P_{C}\left(y_{2}\right)\right\|_{2}^{2} .
$$

Exercise 3. (projection 2)
Let $A \in \mathbb{R}^{m \times n}$ with $m<n$ be a matrix with full rank and $y \in \mathbb{R}^{n}$. Show that the optimization problem

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|x-y\|_{2}^{2}
$$

with constraint

$$
A x=0
$$

has the solution $x^{*}=\left(I-A^{\top}\left(A A^{\top}\right)^{-1} A\right) y$.

Exercise 4. (arithmetic and geometric mean)
Consider the optimization problem

$$
\min _{x \in \mathbb{R}^{n}} \sum_{i=1}^{n} x_{i}
$$

with constraints

$$
\begin{aligned}
\prod_{i=1}^{n} x_{i} & =c \\
-x_{i} & \leq 0, \quad i=1, \ldots, n
\end{aligned}
$$

for some $c>0$.
a) First, show that the global solution $x^{*} \in \mathbb{R}^{n}$ satisfies $x^{*}>0$ (componentwise) and that x^{*} satisfies the KKT conditions. Afterwards, use this information to compute x^{*}.
b) Use a) to show the inequality

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq \frac{1}{n} \sum_{j=1}^{n} x_{j}
$$

for all $x \in\left(\mathbb{R}_{\geq 0}\right)^{n}$.
(6 points)

