Scientific Computing 2

Summer term 2017
Prof. Dr. Ira Neitzel
Christopher Kacwin

Sheet 4

Submission on Thursday, 18.5.2017.

Exercise 1. (projection)
Let $C \in \mathbb{R}^{n}$ be a closed, convex, nonempty set and $y \in \mathbb{R}^{n}$. Let further $H \in \mathbb{R}^{n \times n}$ be positive definite and consider the optimization problem

$$
\min _{x \in C} f(x)=\frac{1}{2}(x-y)^{\top} H(x-y)
$$

Use an appropriate substitution to describe the solution of this problem in terms of a projection operator. Which form does the corresponding variational inequality take?
(4 points)
Exercise 2. (Minkowski inequality)
Let $1 \leq p \leq q<\infty$. Show the following inequality by considering an appropriate optimization problem:

$$
\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} \leq\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{1 / q}
$$

(6 points)
Exercise 3. (optimality conditions 1)
Consider the optimization problem

$$
\min _{x \in \mathbb{R}^{3}} f(x)=x_{1}+x_{2}^{2}+x_{3}^{3}
$$

with constraint

$$
g(x)=1-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \leq 0
$$

a) Show that all points in the feasible set satisfy a CQ.
b) Verify that $x^{*}=(1,0,0)^{\top}$ with $\lambda^{*}=0.5$ satisfy the KKT conditions.
c) Compute $\nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right)$.
d) Use the second order necessary optimality condition to show that x^{*} is not a local solution.

Exercise 4. (optimality conditions 2)
a) Solve the following optimization problems and check necessary and sufficient optimality conditions.
(i) $\left\{\begin{array}{l}\min f\left(x_{1}, x_{2}\right)=\left(x_{1}-3\right)+x_{2}^{2} \\ x_{1}^{2}-x_{2} \leq 0\end{array}\right.$
$(i i)\left\{\begin{array}{l}\min f\left(x_{1}, x_{2}\right)=\left(x_{1}-2\right)+\left(x_{2}-1\right)^{2} \\ x_{1}^{2}-x_{2} \leq 0 \\ x_{1}+x_{2}-2 \leq 0\end{array}\right.$
b) Consider the optimization problem

$$
\min _{x \in \mathbb{R}^{2}} f(x)=x_{2}+\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)
$$

with constraint

$$
g(x)=-x_{1}^{2}-x^{2} \leq 0
$$

Show that $x^{*}=(0,0)^{\top}$ satisfies the KKT-conditions and verify that $\nabla^{2} f\left(x^{*}\right)$ is positive definite on \mathbb{R}^{2}. Is x^{*} a local solution? Justify your answer.

