

Scientific Computing 2

Summer term 2017 Prof. Dr. Ira Neitzel Christopher Kacwin

Sheet 6

Submission on Thursday, 1.6.2017.

Exercise 1. (electrical network)

In a complex electrical network, the strength of the electric current is to be maximized via callibrating two electrical resistors $R_1, R_2 \in (0, R_{max})$. There is no mathematical model available, therefore a simple strategy is used: For a fixed R_2 , we optimize over R_1 . with this new R_1 fixed, we optimize over R_2 . We repeat this procedure until we arrive in a fixed point of this iteration.

Is it possible to find the solution of this optimization problem with the described method? Why/Why not?

(4 points)

Exercise 2. (straight lines)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be two times continuously differentiable. Let $x^* \in \mathbb{R}^n$ be a local minimum of f on every straight line through x^* , i.e., the functions

 $g_d(t) = f(x^* + td)$

all have a local minimum at t = 0 for all $d \in \mathbb{R}^n$.

- a) Show that $\nabla f(x^*) = 0$.
- b) Let \tilde{x} be a local minimum of f. Show that \tilde{x} is a local minimum of f on every straight line through \tilde{x} .
- c) Let $f(x_1, x_2) = (x_2 px_1^2)(x_2 qx_1^2)$ with $0 . Show that <math>x^* = (0, 0)^{\top}$ is a local minimum of f on every straight line through x^* . Also show that x^* is not a local minimum of f.

(6 points)

Exercise 3. (gradient descent)

We consider the gradient descent method with a constant stepsize $\sigma > 0$.

- a) Let $f : \mathbb{R}^n \to \mathbb{R}$ be given as $f(x) = ||x||_2^{3/2}$. Show that ∇f is not Lipschitzcontinuous on $\mathbb{R}^n \setminus \{0\}$. Furthermore, show that the gradient descent method with constant stepsize either reaches the gobal minimum $x^* = 0$ after a finite number of steps or does not converge to x^* at all.
- b) Let $f : \mathbb{R}^n \to \mathbb{R}$ be given as $f(x) = ||x||_2^{2+\beta}$ with $\beta > 0$. For which x_0, σ does the gradient descent method converge/diverge?

(4 points)