
V4E2 - Numerical Simulation

Sommersemester 2018
Prof. Dr. J. Garcke

Teaching assistant: Biagio Paparella

Tutor: Marko Rajković
(marko.rajkovic@uni-bonn.de)

Exercise sheet 11. To be handed in on Tuesday, 10.07.2018.

We started the last part of this course with the finite-horizon problem in optimal control.
If v is the value function, the strategy for obtaining a numerical approximation has been:
first, discretize the time and get a corresponding DPP for the discretized problem, whose
solution we write with v∆t (Thm 36); then, choose a space discretization and define v∆t

n , again
with a corresponding DPP. Here we chosen a grid setting with Lagrange interpolation for
values between the nodes (Thm 37), but in principle other choices are possible. We obtained
a backward-in-time scheme that allowed to completely solve the finite-horizon problem.

Exercise 1. (Solving a finite-horizon problem)

Let’s consider the following state dynamics (with notations as done in class):{
ẋ(t) = tα(t) t ∈ (0, 1]

x(0) = x0 t = 0

To further you go, the more you spend...

l(z, a) = az

...but if you go in the right place, you receive a good compensation:

ψ(x) =

{
0 x ≤ e

2

x− e
2 otherwise

The set A of allowed controls is defined as follows: divide the time interval [0, 1] in 10 parts.
Then α(t) : [0, 1] → R belongs to A iff it is piecewise constantly 0 or 1 on every of that
subdivision (you can think of α = 0 as stopping, the other case as moving).

Consider it as a finite-horizon optimal control problem, where you want to study the cost of
every dynamic depending on the possible starting point. Plot your numerical solution of the
value function.

(6 Punkte)

Other absolutely important topics covered in class have been the Infinite Horizon variant, and
then its formulation in the context of Reinforcement Learning. A recap will be done in the next
exercise sheet, rather we conclude this problem set with a property concerning the Howards
algorithm about policy iteration and a (hopefully) enjoyable Python example.

Let M denote the set of real valued N ×N matrices. We denote by αa the vector

αa = (a, . . . , a)>.

Let AN be a compact set of vectors α = (α1, . . . , αn)>. We define the set of minimizers
associated with F (x) by

Ax := {α ∈ AN : B(α)x− c(α) = F (x)}

where
F (x) := min

α∈AN
(B(α)x− c(α))

1



and it’s component wise set

Ax,i := {a ∈ A : [B(αa)x− c(αa)]i = [F (x)]i}

where
Fi(x) = min

α∈AN
[B(α)x− c(α)]i.

The assumptions of Theorem 45 are:

(H1) For every α ∈ An, the matrix B(α) is monotone (B is invertible and B−1 is component
wise ≥ 0)

(H2) When A is an infinite compact set, the functions α ∈ AN → B(α) ∈ M and α ∈ AN →
c(α) ∈ RN are continuous.

We assume for α = (α1, . . . , αN ) ∈ An that Bi,j(α) and ci(α) depend only on αi.

Exercise 2. (Consider the setup of Theorem 45)

(i) Show under the assumptions from Theorem 45 it holds, that for every v ∈ RN and

d(αv+w
i , Av,i)→ 0, w ∈ RN , ‖w‖ → 0

with αv+w
i ∈ Av+w,i. Hint: Prove by contradiction. Define the set

Kδ := {a ∈ A : d(a,Av,i) ≥ δ > 0}

and consider properties of
mδ := inf

a∈Kδ
[B(a)v − c(a)]i

(ii) Show that using (i) one can find αk,∗ ∈ Av∗ such that for αk+1 = αv
k

B(αk+1)−B(αk,∗)→ 0

for k →∞. Hint: use αv
k

= αv+hk , hk := vk − v∗.
(4+4 Punkte)

Exercise 3. (Bonus exercise)

An introductory example playing Tic-Tac-Toe is presented in

Sutton, R., Barto, A. Reinforcement Learning, MIT Press, 1998.

beginning from page 10. Code that allows simulations is provided here: https://github.com/
ShangtongZhang/reinforcement-learning-an-introduction/blob/master/chapter01/

TicTacToe.py Discuss the following issues stated there. You can try to modify the code to
obtain ideas.

• Self-Play: Suppose, instead of playing against a random opponent, the reinforcement
learning algorithm described above played against itself, with both sides learning. What
do you think would happen in this case? Would it learn a different policy for selecting
moves?

• Symmetries: Many Tic-Tac-Toe positions appear different but are really the same be-
cause of symmetries. How might we amend the learning process described above to take
advantage of this? In what ways would this change improve the learning process? Now
think again. Suppose the opponent did not take advantage of symmetries. In that case,
should we? Is it true, then, that symmetrically equivalent positions should necessarily
have the same value?

• Greedy Play: Suppose the reinforcement learning player was greedy, that is, it always
played the move that brought it to the position that it rated the best. Might it learn to
play better, or worse, than a non-greedy player? What problems might occur?

The book is available via http://incompleteideas.net/book/the-book-2nd.html

(5* Punkte)

2

https://github.com/ShangtongZhang/reinforcement-learning-an-introduction/blob/master/chapter01/TicTacToe.py
https://github.com/ShangtongZhang/reinforcement-learning-an-introduction/blob/master/chapter01/TicTacToe.py
https://github.com/ShangtongZhang/reinforcement-learning-an-introduction/blob/master/chapter01/TicTacToe.py
http://incompleteideas.net/book/the-book-2nd.html

