
Prof. Dr. Jochen Garcke

Dr. Bastian Bohn

Jannik Schürg

1
L INEAR LEAST SQUARES AND k -NEAREST

NE IGHBORS

Send your solutions

to this chapter’s tasks

until

April 19th.

1.1 data analysis basics

In most branches of science, economy and industry the amount of

available data has become immense during the recent years. Most

of these data do not contain any valuable information at all. However,

the differentiation between useful data compared tomeaningless “data

waste” is seldom straightforward. The phenomenon of the availability

of enormous amounts of data and the consequential tasks and prob-

lems arising from this are commonly summarized by the term Big Data.

Tomeet the different challenges of Big Data, such as describing the use-

ful information in a more compact format (dimensionality reduction) or

making predictions on unseen data (machine learning), many ideas and

approaches have emerged. For a thorough introduction into machine

learning we refer the interested reader to [3].

In this practical lab, we aim at exploring and implementing several

well-known machine learning and data analysis algorithms. Further-

more, we will apply them to real-world data sets to get an intuition on

the specific needs in different applications. To this end, you will need

to be able to use certain python tools/libraries.

Task 1.0. (a) Make yourself familiar with the programming in Python
1

and its libraries NumPy
2
and MatPlotLib.

3
Furthermore, you will

need Jupyter Notebooks
4
to run the template codes.

(b) Have a look at the tutorial notebook on the practical lab website and

familiarize yourself with the concept of vectorization, i.e. using opera-

tions on whole arrays instead of using loops and operating on single

array elements.

(c) Create a jupyter-notebook in which you create an array z consisting of

10000 random numbers drawn from {0, 1, 2}. Implement two versions

of a function which counts the number of appearances of the subse-

quence (2, 0, 1) in z. The first version should work with a loop that

1 https://www.python.org/
2 http://www.numpy.org/
3 https://matplotlib.org/
4 https://jupyter.org/

5

Send anonymous feedback for this page.

https://www.python.org/
http://www.numpy.org/
https://matplotlib.org/
https://jupyter.org/
https://ins.uni-bonn.de/feedback/mllab?page=5&vcs=74780d4b&obj=Script

6 linear least squares and k-nearest neighbors

accesses the array z elementwise and makes elementwise comparisons.

The second version should be a vectorized one (Hint: The numpy func-

tion logical_and might help you), which operates on (almost) the

whole array z. Compare the runtime of the two versions.

1.2 classification and regression

One of the most common tasks in machine learning is supervised learn-

ing. Here a function
5 f is learned from input–output samples. The goal

is that not only the sample points—usually called training data—are

(approximately) fitted by f , but also new data points—usually called

test data or evaluation data—which stem from the same distribution as

the training data.

Some specific examples are:

• Identifying handwritten letters or digits.

• Estimate risk of disease from patient data.

• Identify email messages that are spam and those that are not.

• Detect critical failures in industrial facilities.

Let us state a supervised learning problem in a mathematical way:

Let Ω, Γ be arbitrary sets. To this end, we assume we are given input

data D := {(xi, yi) ∈ Ω× Γ | i = 1, . . . , n} drawn i.i.d. according to

some probability measure µ on Ω× Γ. Our goal is to find f : Ω → Γ
such that

f (xi) ≈ yi for all i = 1, . . . , n. (1.1)

Furthermore, we want f (x̃i) ≈ ỹi for i = 1, . . . , ñ on a test data set,

which is also drawn i.i.d. according to µ. This is called a regression

problem. We will make the notion of f (xi) ≈ yi precise soon.

In the special case of Γ beingfinite, in particular if given in categorical

form, and if we substitute “≈” by “=” above, we call this a classification

problem.

1.3 linear least squares (lls)

Now, let Ω = Rd
and Γ ⊂ R. Instead of searching for any function f

which fits the input data, we will make a restriction on the model, i.e.

we assume that f has a certain structure. Let us first consider the most

simple, a linear structure of f :

f (t) = α0 +
d

∑
i=1

αi · ti = (1 t1 t2 . . . td)︸ ︷︷ ︸
=: t̂>

·α. (LIN)

5 More generally, one could also consider learning a measure modelling the connection

between the input–output pairs.

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=6&vcs=74780d4b&obj=Script

1.3 linear least squares (lls) 7

Here, the d + 1 free parameters, which determine the function f are

α0, . . . , αd ∈ R. Our task is now to determine α using the input data D.
To this end, we have to reformulate the problem of finding an f which

fulfills (1.1) into a mathematical (optimization) problem. To achieve

this, we use a so-called loss function L : (Γ× Γ)n → [0, ∞]. One of the

most common loss functions is the quadratic or least squares loss:

L ((a1, b1) , (a2, b2) , . . . , (an, bn)) =
1
n

n

∑
i=1

(ai − bi)
2 .

The so-called linear least squares algorithm then solves

min
affine linear f

L ((f (x1), y1) , (f (x2), y2) , . . . , (f (xn), yn))

= min
affine linear f

1
n

n

∑
i=1

(f (xi)− yi)
2

= min
α∈Rd+1

1
n

n

∑
i=1

(
α> · x̂i − yi

)2. (1.2)

If we let X := (x̂1 x̂2 . . . x̂n)
> ∈ Rn×(d+1)

be the (modified) input data

matrix and y := (y1 y2 . . . yn)
> ∈ Rn

be the vector of outputs, we can

rewrite the algorithm as

min
α∈Rd+1

1
n
(Xα− y)> (Xα− y) =

1
n

min
α∈Rd+1

‖Xα− y‖2.

Since this is a quadratic optimization problem, the optimal coefficients

are given by
The numerically

inclined reader

should prefer using a

QR factorization.

α =
(
X>X

)−1X>y. (LLS)

Let us try this least squares algorithm on some artificial data, which

we need to create first.We consider an easy classification examplewith

Ω = R2
and Γ = {0, 1}.

Task 1.1. Create n = 200 data points in the following way:

(a) Draw ten random i.i.d. samples from the two-variate normal distribu-

tionN
(
(3

2 0)>, I
)
and store them in a numpy array a. Draw another ten

samples according to N
(
(0 3

2)
>, I
)
and store them in another numpy

array b. Use MatPlotLib to make a scatter plot (i.e. plot the points in a

2D coordinate system) of the elements in a and the elements in b using

different colors for the two arrays.

(b) Pick 100 equidistributed indices i1, . . . , i100 from {1, 2, . . . , 10} and set
the j-th data point xj to

xj := a[ij]︸︷︷︸
ij-th element of a

+ ε j for all j = 1, . . . , 100 with ε j ∼ N
(
(0 0)>,

1
4

I
)
.

Proceed analogously for j = 101, . . . , 200 by substituting a by b. Make

a scatter plot for the data points xj with j = 1, . . . , 200 with different

colors for the first 100 points and the second 100 points.

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=7&vcs=74780d4b&obj=Script

8 linear least squares and k-nearest neighbors

(c) The first j = 1, . . . , 100 data points get the label yj = 0, the next

j = 101, . . . , 200 ones get yj = 1.

Task 1.2. Implement a linear least squares algorithm, i.e. solve (LLS). Hint:

You can use numpy.linalg.solve to solve a system of linear equations.

Apply it to the data from task 1.1. Plot the scattered input data as in step (b)

of task 1.1 together with the separating hyperplane, i.e. the contour line given

by

α0 + α1x1 + α2x2 =
1
2

,

where x1 and x2 denote the coordinates in R2
(not to be confused with the data

xi). The result should look (approximately) like this:

1.3.1 Quantifying the misclassification error

The separating hyperplane from task 1.2 can be used to divide or

classify the data into two parts. Let us quantify how good our classifier

really is.

Task 1.3. Build the so-called confusion matrix for the data and the hyper-

plane from task 1.2, i.e. a matrix C, with entries

Cij = # {Points classified as i, where the real label is j} .

In our case this is a 2× 2 matrix with i, j ∈ {0, 1} since |Γ| = 2. Calculate
the accuracy

trace(C)
n .

As we mentioned above, machine learning engineers are not re-

ally interested in building algorithms which only perform well on the

training data, but rather in having methods which generalize well to

(unseen) test data, which—in the best case—follow the same law/dis-

tribution as the training data.

Task 1.4. Create 10 000 test points for each of the two classes in the same

way as you created the training data in step (b) of task 1.1. Evaluate the LLS

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=8&vcs=74780d4b&obj=Script

1.3 linear least squares (lls) 9

classifier, which was built on the training, on the test data and compute the

confusion matrix and the accuracy of the test data. Compare your results to

the ones from task 1.3.

1.3.2 Our first “real” data set and Pandas

Next, we will try our LLS classifier on real-world data, namely the Iris

dataset [1, 2]. The dataset consists of 150 points, which describe three

different types of Iris plants. We have three classes

{Iris-setosa, Iris-versicolor, Iris-virginica}.

The four features, i.e. the coordinates in Ω = R4
refer to certain length

and width measurements of the plants.

We will classify one of the three plant classes against both of the

remaining classes by using our LLS algorithm. To this end, we first

have to read in the data set and cast the class names to Γ = {0, 1}.
Instead of reading in the data by hand, we employ the very useful

Pandas library
6
in python:

import pandas as pd
url = ’https://archive.ics.uci.edu/ml/machine-learning -

databases/iris/iris.data’

irisDataFrame = pd.read_csv(url, header=None)

In Pandas, the data is stored in an instance of DataFrame on which

many useful operations can be run.

Task 1.5. Make yourself familiar with the basics of Pandas.

(a) Read in the Iris data set and use the data labels yi = 0 for the Iris-setosa

instances and yi = 1 for the Iris-versicolor and Iris-virginica classes:

a.1. Run the LLS algorithm by using only the first two dimensions of

Ω in the input data, i.e. we only look at the first two features. Plot

the scattered data and the separating hyperplane as in task 1.2.

a.2. Now run the LLS algorithm by using all four features/dimensions

of the input data. Compute the confusion matrix and the accuracy.

(b) Finally, run the same two steps as in (a), but now try to classify Iris-

versicolor instances (label yi = 0) against both Iris-setosa and Iris-

virginica (label yi = 1). What do you observe?

1.3.3 Another approach to solving the optimization problem

Although (LLS) is the exact solution for the linear least squares ap-

proach above,we couldpursue adifferent, iterative approach to solving

(1.2). To this end, we consider a gradient descent method approach. Let

6 https://pandas.pydata.org/

Send anonymous feedback for this page.

https://pandas.pydata.org/
https://ins.uni-bonn.de/feedback/mllab?page=9&vcs=74780d4b&obj=Script

10 linear least squares and k-nearest neighbors

(a) Iris Setosa.
a

(b) Iris Versicolor.
b

(c) Iris Virginica.
c

Figure 1.1: Pictures of three Iris plants.

a Photo by Emma Forsberg from Anchorage, USA.

b Photo by Cliff from Arlington, Virginia, USA.

c Photo by Christer T. Johansson.

J(α) := 1
n ∑n

i=1
(
α> · x̂i − yi

)2
be the goal functional, which should be

minimized. A gradient descent approach corresponds to the following

pseduo-algorithm:

Initialize alpha randomly

step = 0

while (not converged) and (step < maxSteps):

alpha = alpha - nu * grad(J(alpha))

step = step + 1

The stepwidth ν > 0 and themaximumnumber of iterationsmaxSteps

have to be chosen before running this method. A possible convergence

criterion is reached if ∇J(α) is almost zero.

Task 1.6. Implement the gradient descent method and run an LLS algorithm

with a gradient descent optimizer for the data from task 1.5 (a.1.). Choose

ν ∈ {1, 10−1, 10−2, . . .} as the largest value such that convergence is achieved.
Create a plot of the value of J vs. the actual iteration number. What do you

observe?

Although it is not very meaningful to use a gradient descent opti-

mizer for our LLS algorithm,wewill encountermore elaboratemodels

for the function f later on for which this approach will be more appro-

priate.

1.3.4 Data normalization

An underestimated pre-processing step in data analysis is data normal-

ization or data scaling. The way in which a data set is scaled can have

significant impact on the outcome and/or the runtime of a machine

learning algorithm.

Send anonymous feedback for this page.

https://commons.wikimedia.org/wiki/File:Iris_setosa_var._setosa_(2595031014).jpg
https://commons.wikimedia.org/wiki/File:Blue_Flag_(Iris_versicolor)_-_United_States_National_Arboretum.jpg
https://commons.wikimedia.org/wiki/File:IMG_7911-Iris_virginica.jpg
https://ins.uni-bonn.de/feedback/mllab?page=10&vcs=74780d4b&obj=Script

1.4 k-nearest neighbors 11

Task 1.7. Normalize the data from task 1.5 (a.1.). To this end, calculate the

mean µj and the standard deviation σj for each feature j (i.e. each coordinate

direction j of the data set) and set the j-th component of the i-th data point to

[xi]j :=
[xi]j − µj

σj
.

Now run the gradient descent LLS algorithm on the normalized data. Again,

choose ν as the largest value such that convergence is achieved. Compare the

first 100 iteration steps by plotting the value of J vs. the iteration number for

both the normalized and the unnormalized case. What do you observe?

1.4 k-nearest neighbors

Next, we consider a different regression/classification technique: The

so-called k-nearest neighbor algorithm. Here, a data point x from a test

set is assigned a specific mean of training data values

nearNeighk(x) =
1
k ∑
{i|xi∈Nk(x)}

yi,

where Nk(x) are the closest k training points to x. For a two class

problem (Γ = {0, 1}), the data point x would be assigned to class 0 if

nearNeighk(x) < 0.5 and to class 1 otherwise. If nearNeighk(x) = 0.5
you can choose which class to assign to x.

Task 1.8. Implement the k-nearest neighbor algorithm (Hint: Have a look at

numpy’s argpartition function). There are many possible ways to calcu-

late the pairwise distances between data sets. For instance, you can use the

scipy.spatial.distance library. Run the algorithm with k = 1, k = 15
and k = 30 and calculate the confusionmatrix and the accuracy for the data set

from task 1.1 (using it as training and test data set). Make a scatter plot of the

data and plot the separation level set, i.e. the contour of nearNeighk(x) =
1
2 .

Task 1.9. Let us test how the algorithm performs for every possible k.

(a) Run the k-nearest neighbors algorithm for the data from task 1.1 for all

k = 1, . . . , 200 and store the accuracy for each k.

(b) Do the same thing as in step (a) but now use the data created in task 1.4

as test data.

(c) Plot the accuracies from steps (a) and (b) vs. the value of k. What do

you observe?

1.5 what we did not cover . . .

stochastics Since we can usually assume that the input data is

drawn according to an (unknown) probability distribution, we can

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=11&vcs=74780d4b&obj=Script

12 linear least squares and k-nearest neighbors

formulate the problem of finding an optimal classificator/regressor as

a stochastic problem. In this context, especially the so-called Bayesian

methods are commonly used. Here, Bayes’ theorem is applied to obtain

a solution to the corresponding stochastic optimization problem, see

e.g. [3].

logistic regression Another famous linear model to obtain op-

timal classifiers is the logistic regression model, where the distribution

of the underlying random variables is modelled, see [3]. The approach

also involves a different loss function than least squares.

regularization Instead of simply minimizing a loss function as

in the case of linear least squares, we could add a regularization term

to the minimization problem. This can be interpreted as a trade-off

between minimizing the loss on the training data and obtaining a

simple or sparsemodel, see [3]. Examples for such regularization terms

are `p normsof the coefficients (Lasso, Tikhonov) ormore complexnorms

involving derivatives of the minimizer.

references

[1] Dua Dheeru and Efi Karra Taniskidou. UCI Machine Learning

Repository. 2017. url: http://archive.ics.uci.edu/ml.

[2] R. A. Fisher. “The use of multiple measurements in taxonomic

problems.” In: Annals of Eugenics 7.2 (1936), pp. 179–188. issn:

2050-1439. doi: 10.1111/j.1469-1809.1936.tb02137.x.

[3] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The El-

ements of Statistical Learning. Springer Series in Statistics. New

York, NY, USA: Springer New York Inc., 2009. url: https://web.

stanford.edu/~hastie/ElemStatLearn/download.html.

Send anonymous feedback for this page.

http://archive.ics.uci.edu/ml
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://web.stanford.edu/~hastie/ElemStatLearn/download.html
https://web.stanford.edu/~hastie/ElemStatLearn/download.html
https://ins.uni-bonn.de/feedback/mllab?page=12&vcs=74780d4b&obj=Script

