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We have seen in task 1.2 how a linear model can be used to obtain a

separating hyperplane for classification. A drawback of this approach

is the fact that the least squares error does not capture what we expect

fromanoptimal separation. This is illustrated infig. 2.1. In this example

the plane created by maximizing the distance to the nearest points of

each class provides a better classification. One could equivalently look

for the plane with the largest possible margin (in orthogonal direction)

around it such that no data point is within the margin.

In this chapter we will see how this plane can be found and we will

also treat the case of nonlinear separability. The resulting algorithm

is known as Support Vector Machine (SVM) and it is one of the most

famous algorithms in Machine Learning [4, 5].

2.1 optimal separating hyperplanes

Let Ω = Rd
, Γ = {−1, 1}. Instead of performing a least squares fit

g for given data D := {(xi, yi) ∈ Ω× Γ | i = 1, . . . , n} and then using

the hyperplane g(t) = 0 as a separator, we now determine the optimal

margin hyperplane

f (t) = α0 +
d

∑
i=1

αiti = t̂> · α (2.1)

Figure 2.1: Optimal fit of a hyperplane to input data labelled with two classes.

The optimization is w.r.t. least-squares (dashed) and maximum

minimum distance to nearest point (solid).
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14 support vector machines

between two classes of points which can be separated linearly. To this

end, we solve the constrained optimization problem

max
α∈Rd+1,∑d

i=1 α2
i =1

M

subject to yi

(
x̂i
> · α

)
≥ M for all i = 1, . . . , n.

This problem can be recast into its so-calledWolfe dual form

max
β∈Rn

n

∑
i=1

βi −
1
2

n

∑
i,j=1

βiβ jyiyj〈xi, xj〉Ω

subject to 0 ≤ βi ∀ i = 1, . . . , n (OMH)

and

n

∑
i=1

βiyi = 0.

Now, f is given by

f (t) =
n

∑
i=1

βiyi〈t, xi〉Ω + b. (2.2)

Note that we can easily switch between the representations (2.1) and

(2.2) by setting α0 = b and

(α1 . . . αd)
T =

n

∑
i=1

βiyixi.

Details can be found in [2, 4]. We still have to propose a suitable

optimization algorithm to solve (OMH) and to determine the so-called

bias b.

2.2 support vector machines

By slightly altering the optimization problem above, we obtain a so-

called support vector machine. To this end we add additional constraints

to (OMH):

max
β∈Rn

n

∑
i=1

βi −
1
2

n

∑
i,j=1

βiβ jyiyj〈xi, xj〉Ω

subject to 0 ≤ βi ≤ C ∀ i = 1, . . . , n (SVM)

and

n

∑
i=1

βiyi = 0.

for some constant C > 0. This can be interpreted as a so-called reg-

ularization. It allows us to obtain a model which possibly represents

a better generalization for unseen test data than in the unregularized

case C = ∞. More specifically, the choice of C will introduce a trade-

off between the minimization of the misclassification error and the

maximization of the margin M from above.
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2.2 support vector machines 15

The so-called support vectors are the xk for which βk > 0, k ∈
{1, . . . , n}. The name hints at the fact that these are the necessary

input data points, which span the vector (α1 . . . αd)
T
that determines

the hyperplane. To solve (SVM) we will use the sequential minimal opti-

mization (SMO) algorithm. Note that for the linear SVMwe considered

so far, other solvers are more suitable. But the SMO algorithm can be

easily adapted to the nonlinear SVM, which is introduced next.

2.2.1 Sequential minimal optimization

Algorithm 2.1 OneStep algorithm to update the coefficients βi, β j and

the bias b of f (·) = ∑n
l=1 βlyl〈·, xl〉Ω + b

Input: Indices i, j ∈ {1, . . . , n}.

δ← yi
(
( f (xj)− yj)− ( f (xi)− yi)

)
s← yi · yj
χ← 〈xi, xi〉Ω + 〈xj, xj〉Ω − 2 · 〈xi, xj〉Ω
γ← sβi + β j
if s = 1 then

L← max(0, γ− C)
H ← min(γ, C)

else
L← max(0,−γ)

H ← min(C, C− γ)

end if
if χ > 0 then

βi ← min
(

max
(

βi +
δ
χ , L

)
, H
)

else if δ > 0 then
βi ← L

else
βi ← H

end if
β j ← γ− sβi
Update function evaluations f (xl), l = 1, . . . , n
b← b− 1

2 ( f (xi)− yi + f (xj)− yj)

The SMO algorithm [3] works in an iterative manner. At first the

values for β and b are initialized (e.g. as 0). In every iteration step we

select two indices i, j ∈ {1, . . . , n} and solve the quadratic optimization

problem (SVM) by fixing all βk for indices k ∈ {1, . . . , n} \ {i, j}. Note,

that this can be done exactly. To this end, one iterative step for the

selected indices i, j can be found in algorithm 2.1.

Task 2.1. Implement the function OneStep from algorithm 2.1, which takes

one iterative step of the SMO algorithm for two selected indices i and j.
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16 support vector machines

Figure 2.2: Support Vector Classifier for C = 1.

Task 2.2. To have a small data set on which we can test our algorithm, we

draw 20 two-dimensional vectors according to an exponential distribution

with λ = 4 in each of the coordinate directions, i.e. the j-th coordinate of the

i-th vector is drawn i.i.d. according to [xi]j ∼ exp(4) for all i = 1, . . . , 20
and j = 1, 2. We assign the label −1 to these xi. Then, we draw 20 two-

dimensional vectors according to exp(0.5) in the same way and assign the

label 1 to them.

Task 2.3. Implement a function SMO which initializes β = 0 and b = 0 and

- in each iteration step - randomly picks i, j ∈ {1, . . . , n} such that i 6= j and
calls OneStep with indices i, j to perform an optimization.

(a) After the last iteration step, we need to compute a final estimate for b.
To this end, calculate the median med of f (xk) − yk for all support

vector indices k, i.e. all k ∈ {1, . . . , n} for which βk > 0. Then, set
b← b−med.

(b) Run the SMO functionwith 10, 000 iteration steps to compute a support

vector classifier f for the n = 40 data points from task 2.2. Compute

the results for C = 0.01, C = 1 and C = 100. For each C, plot the

scattered data and the hyperplane corresponding to f = 0. Compare

your results to the separating hyperplane computed by a linear least

squares algorithm.

(c) Count the number of support vectors. Mark the corresponding xk in

your scattered data plot.

(d) Furthermore, also count the number of margin defining vectors, i.e. the

number of indices k ∈ {1, . . . , n} for which C > βk > 0 and mark the

corresponding xk in the scattered data plot. An example for such a plot

can be found in fig. 2.2.

What influence does the parameterC have on the number of the support vectors

and on the position of the separating hyperplane?

Now let us check how our classifiers perform if we evaluate them

on some test data.
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2.3 nonlinearity – feature maps and kernels 17

Task 2.4. Draw 2, 000 test data points according to the distributions from

task 2.2 (1, 000 points for class−1 and 1, 000 points for class 1). Evaluate the
accuracy (percentage of correctly classified data points) for the LLS and SVM

models calculated in task task 2.3.

The randompicks of i, j in the SMO algorithm can be very ineffective

for large data sets. Therefore,we have to comeupwith a better heuristic

to choose appropriate indices in each step of the SMOalgorithm. There

exist many heuristics to choose suitable indices in each step. We refer

the interested reader to [3, 4]. We will employ the Karush-Kuhn-Tucker

conditions of the dual minimization problem:

KKTi := (C− βi)max (0, 1− yi f (xi))+ βi max (0, yi f (xi)− 1) . (2.3)

Task 2.5. Repeat task 2.3 and task 2.4 but instead of drawing the indices

i, j for each SMO-step randomly, write an outer loop which iterates over

all i ∈ {1, . . . , n} and check if KKTi > 0. If this is the case, randomly

pick a j 6= i for which 0 < β j < C. If no such j exists, randomly pick a

j ∈ {1, . . . , n} \ {i}. Subsequently, run the OneStep function for the pair

(i, j). If KKTi = 0 for each i or if the maximum number of OneStep calls

(10, 000) is reached, the algorithm terminates. Compare the results achieved

with this heuristic with the results achieved by randomly picking i and j. How

do their runtimes compare?

2.3 nonlinearity – feature maps and kernels

Amajor drawback of the linear least squares approach and the support

vector machines above is the fact that the resulting functions are linear.

However, in cases where the distribution of the input data is such

that a linear hyperplane is not a suitable to classify the data, it is

advantageous to consider nonlinear approaches. We already learned

about a very simple nonlinear algorithm: k-nearest neighbors. Here,

the separation is done by a nonlinear function. Next, we will learn

about the nonlinear SVM.

2.3.1 Nonlinear SVM

The main reason for the huge success of SVMs in machine learning

is due to the fact that we can slightly alter (SVM) and (2.2) to obtain

nonlinear classifiers. To this end, we consider the so-called kernel trick:

We change the scalar products to an evaluation of a kernel function

K : Ω×Ω→ R

〈t, x〉Ω −→ K(t, x). (Kernel trick)

In machine learning this is usually done by using a nonlinear feature

map φ : Ω ⊂ Rd → V into a Hilbert space V (usually with higher

dimension than d) and defining

K(t, x) := 〈φ(t), φ(x)〉V .
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18 support vector machines

In this way, we transform our input data by the feature map and can

apply our SVMalgorithmon the image of φ by using the scalar product

in V. Let us have a look at a simple example.

Task 2.6. Generate 50 uniformly distributed i.i.d. points which lie in {t ∈
R2 | ‖t‖2 < 1} (e.g. by drawing uniformly distributed points in (−1, 1)2

until50 of themarewithin the unit sphere) and label themby−1.Nowgenerate

50 data points, which are uniformly distributed in {t ∈ R2 | 1 < ‖t‖2 < 2}
and label them by 1.

(a) Fit a linear SVM for C = 10 to the data and plot the scattered data as

well as the separating hyperplane.

(b) Transform the data by the feature map φ : R2 → R3
defined by

φ(t) :=
(
t1, t2, t2

1 + t2
2
)

.

Fit an SVM for C = 10 to the transformed data. Plot the scattered data

and the nonlinear separation curve in a 2d plot (i.e. in the same way as

in (a)). What does the feature map do and why does it work so well?

One of the most important theorems for kernel learning algorithms

such as the nonlinear SVM is Mercer’s theorem: It tells us that for each

continuous, symmetric and non-negative definite kernel function K
there exists a corresponding featuremap φ. However, formany famous

kernels such as the Gaussian

Kσ(t, x) := exp

(
−
‖t− x‖2

Rd

2σ2

)

the corresponding vector space V can be infinite-dimensional and an

explicit construction of φ can be infeasible to compute. In these cases

it makes much more sense to work directly with the kernel K.

Task 2.7. Change your SMO code and your function evaluation of f from

(2.2) such that it allows to use a kernel function instead of the scalar product

of the input data, i.e. substitute all scalar products by the evaluation of the

kernel function. Perform a SVM classification (C = 10) with Gaussian kernel

(σ = 1) for the data from task 2.6. Plot the scattered data and the nonlinear

separation curve in a 2d plot. The result should look similar to fig. 2.3.

2.3.2 k-fold crossvalidation

In practical applications the choices of the regularization parameter C
aswell as optional kernel parameters, such as σ for theGaussian kernel,

play an important role. Themost common technique todetermine these

so-called hyperparameters is crossvalidation. Here, the training data set

is randomly split into k parts/folds of approximately equal size. One

fold is taken as test (or evaluation) data while the remaining k − 1
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2.3 nonlinearity – feature maps and kernels 19

Figure 2.3: Support Vector Classifier with Gaussian kernel for C = 10, σ = 1.

folds serve as input data for our algorithm. Subsequently, we take a

different fold as evaluation data and the rest as input data and repeat

the process k times until each fold has been used as evaluation data

once. The (arithmetic) average of the k accuracies calculated on the

evaluation data serves as our quality measure. This process is called

k-fold crossvalidation.
Now, to determine the best choice of hyperparameters, we choose

small candidate sets, e.g. C ∈ {0.01, 0.1, 1, 10, 100}, σ ∈ {1, 10, 100}
and run a k-fold crossvalidation for all possible combinations of pa-

rameter pairs. The pair (C, σ) with the best average accuracies in the

crossvalidation process is the winner. The corresponding pseudocode

can be found in algorithm 2.2. Subsequently, the winning parameter

set is usually taken to learn an SVM on the whole training data, i.e.

all k folds. The resulting model is then evaluated on the true test data,

which has not been touched during the crossvalidation process. More

details on this approach are given in [2, 4] for example.

Algorithm 2.2 Abstract k-fold crossvalidation scheme

Input: k ∈ N, training data D, possible combinations of hyperpa-

rameters P.

Randomly split D into k parts D1, . . . ,Dk of (almost) equal size.

for all p ∈ P do
for all i = 1, . . . , k do

Run learner with input data ∪j 6=iDj and parameters p.
Evaluate resulting model on Di and store accuracy Ai.

end for
Average over the accuracies: Ap ← 1

k ∑k
i=1 Ai.

end for
Determine p

best
← argmaxp∈P Ap

.
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20 support vector machines

Figure 2.4: Four example images (28× 28 pixels) from the MNIST data set

(http://yann.lecun.com/exdb/mnist/).

2.4 application to real world data

We will now apply a support vector machine to a real-world classifica-

tion problem.

2.4.1 Multi-class Learning

Up to now, we always considered classification problems, where our

label set Γ was of size two, i.e. we just had two different classes. In

real-world applications one often encounters so-called multi-class clas-

sification problems, where |Γ| > 2. In this case, a very common idea

is to use
|Γ|(|Γ|−1)

2 pairwise classifiers, i.e. classifiers to discern between

each possible pair γ1 6= γ2 of classes in Γ. To decide, in which class

a data point t lies, each pairwise classifier is evaluated and the class

γ ∈ Γ to which t is assigned the most wins.

In this way, we can apply standard two-class algorithms to solve

multi-class problems. We refer to [2, 4] for more details on different

approaches to multi-class problems.

2.4.2 The MNIST data set

TheMNIST data set (http://yann.lecun.com/exdb/mnist/) consists

of 70, 000 grey-scale images (28× 28 pixels) of handwritten digits. Four

exemplary images can be found in fig. 2.4. Our goal will be to construct

an algorithm which is able to identify the correct digit from an image

of the handwritten one.

You can either download and extract it by hand or use the following

lines of code. As you see, you might need to install the urllib library.

To this end, just run pip install urllib3 in your shell.

#Load MNIST Data

import os
import gzip
from urllib.request import urlretrieve

def download(filename , source=’http://yann.lecun.com/
exdb/mnist/’):

print("Downloading %s" % filename)
urlretrieve(source + filename , filename)
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2.4 application to real world data 21

def load_mnist_images(filename):
if not os.path.exists(filename):

download(filename)

with gzip.open(filename, ’rb’) as f:
data = np.frombuffer(f.read(), np.uint8, offset

=16)

data = data.reshape(-1, 28, 28)

return data / np.float32(256)

def load_mnist_labels(filename):
if not os.path.exists(filename):

download(filename)

with gzip.open(filename, ’rb’) as f:
data = np.frombuffer(f.read(), np.uint8, offset

=8)

return data

X_train = load_mnist_images(’train-images-idx3-ubyte.gz

’)

y_train = load_mnist_labels(’train-labels-idx1-ubyte.gz

’)

X_test = load_mnist_images(’t10k-images-idx3-ubyte.gz’)

y_test = load_mnist_labels(’t10k-labels-idx1-ubyte.gz’)

2.4.3 Scikit-Learn – A neat machine learning library in python

For the sake of understanding the basic programming and machine

learning paradigms, we did (and will) implement the learning al-

gorithms on our own. However, we will also learn how to use im-

portant python machine learning libraries such as scikit-learn (http:

//scikit-learn.org). This is an efficient and easy-to-use library in

which we can find variants of all algorithms we have learned about so

far (LLS, k-NN, SVM) and many more.

Task 2.8. Make yourself familiar with the SVC function in scikit-learn,

which implements a support vector classifier.

(a) Choose a random subset of size 500 from the MNIST training data and

use this as your new training data set for crossvalidation. Perform a

5-fold crossvalidation SVM to determine the optimal parameters among

C ∈ {1, 10, 100} and γ = 1
2σ2 ∈ {0.1, 0.01, 0.001}. (Hint: You can

use the scikit-learn function GridSearchCV.)

(b) Use the determined optimal parameters to learn a support vector classi-

fier on a random 2, 000 point subset of the MNIST training data and

evaluate the confusion matrix and the accuracy on the whole MNIST

test data set. (Hint: You can use the scikit-learnmodule metrics.)

Is our approach of picking a different training set in step (b) – and learning

with the optimal parameters from (a) – valid? Are there potential pitfalls?
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2.5 what we did not cover . . .

non-numerical data Note that the featuremap approach allows

us to also classify data which does not reside in an Euclidean space

by building appropriate feature maps that assign a value in V to each

element of the input data. This is often very useful when it comes to

practical applications where data is not directly given as numerical

values or vectors.

kernel choice The kernel can also be chosen by crossvalidation

over a finite set of fixed kernel functions for instance. However, if we

have some a priori problem knowledge (such as smoothness of the

“true” separation function), we can exploit this in order to choose an

appropriate kernel, see also [1].

regression The linear least squares and the k-nearest neighbors
algorithms also apply to the regression case, where we look for a func-

tion f such that f (xi) ≈ yi and the yi can take arbitrary values in R –

instead of only discrete ones as in classification. However, for support

vector machines this is not so straightforward since our optimization

problem (SVM) originated from the optimalmargin hyperplane formu-

lation. Nevertheless, there also exists a support vectormachines regres-

sion algorithm based on theminimization of the so-called ε-insensitive

loss function, see [4].
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