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So far we have seen examples for supervised learning (e.g., SVMs or

neural networks) and unsupervised learning (PCA). In this chapter we

look into reinforcement learning, which is often associated with artificial

intelligence (AI). Instead of predicting targets, reinforcement learning

tries to make sequential decisions in a given environment. A decision

has to be made among a given set of actions. The goal is to obtain a so

called agent, a map which tells the environment which action to apply

given the current state. The agent is guided
1
in its decisions through

rewards (possibly negative) which are manually chosen. An important

aspect of reinforcement learning is the fact that no details about the

environment are exposed to the agent, the agent can only learn by

applying actions and observing rewards.

Reinforcement learning has been prominently applied to games. For

games typically a positive reward is given for a win and a negative

reward for a loss, all other rewards are zero. One might be tempted to

give non-zero reward for subjectively good or bad events (like losing

a valuable piece in chess, for example), but by not designing a more

sophisticated reward, the agent can come up with original strategies,

which are often superior to humans. In this way, the agent is only told

the ultimate goal, but not how to achieve it. To give an example, the set

of actions for a game could consist of the allowed moves (in a board

game) or buttons to press (in a video game).

Inmanyapplications, at the beginning the agent faces an enormously

large environment with rewards “hidden” deep down a sequence of

steps, similar to a labyrinth. It is unknown where a decision will lead,

also the outcomemight follow a probability distribution, i.e., the same

decision in the same state (situation in which a decision has to be

made) can lead to different new states. A path through the state space,

a sequence of states, actions and rewards, is called a trajectory. The

agent might not only be rewarded late in a trajectory, the immediate

rewards (rewards early in the trajectory) might be lower or negative,

too. Decisions are often based on an estimated value of a state. The

estimate is updated from observations. This mutual influence makes

analysis, and reinforcement learning in general, hard.

An early success is the application of reinforcement learning to the

board game backgammon. The resulting agent, TD-Gammon (1992),

did beat world class players. Computer programs playing games have

1 In the spirit of AI, the agent is often personalized in texts.
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6 reinforcement learning

a long tradition. The chess program DeepBlue is very famous, another

successful example is Chinook [8], a hand-built program for the game

checkers (draughts). It was beaten in 1990 by Marion Tinsley, who

is considered the best checkers player of all-time, being significantly

ahead to his peers. After the loss, Chinook was improved and in a

rematch in 1994 Mario Tinsley had to withdraw after the first games

due to health problems.He later died. It seemed Jonathan Schaeffer, the

lead developer of Chinook, should never know whether his program

could have beaten Tinsley. In 2007, after over ten years of computation,

Schaeffer and his team weakly solved checkers, erasing any doubt

whether Tinsley could have won. Marion Tinsley has lost seven games

in his full career, two of those were against Chinook.

In 2015 the computer program AlphaGo, partly based on reinforce-

ment learning, did beat a world-class Go player, an event predicted not

to happen in the next ten years or more. One could say reinforcement

learningmanaged to becomepersonanongrata of several communities

by beating human intelligence. More to come
2
.

5.1 problem formulation

Let us describe the mathematical setting which we use for reinforce-

ment learning. First, we want to model dynamic systems or environ-

ments. Let S be a set of states. In each state s ∈ S we can choose an

action a from a non-empty set As. If we apply in state s ∈ S an action

a ∈ As our environment transitions to a new state s′ ∈ S. In order to

specify this transition let

P : {(s, a) | s ∈ S, a ∈ As} × B(S)→ [0, 1]

be a stochastic kernel, whereB(S) is the Borel σ-algebra of S (assume that

S is Polish). The exact definition of a stochastic kernel is, among other

things, omitted here, the most important property for our purposes is,

that P((s, a), ·) is a probability measure which we use to model how

likely a state s′ is as the next state, given we are in state s and apply

action a.
For simplification, we assume our environment to be deterministic,

i.e., P((s, a), ·) is a point measure. To ease notation in this case, P is

considered to be a map from {(s, a) | s ∈ S, a ∈ As} to S.

example For no particular reason let us consider photocopiers as

an environment. To describe the state of a photocopier, we could pick

some very general states, for example “working” and “not working”,

or we might position a camera pointed at the photocopier and then

consider apicture of thephotocopier as its state. The set of actions could

include pressing the buttons, fixing a paper jam, or to verbally threaten

it. After choosing an action, the photocopier transitions into a new

2 You think you are an awesome car driver? Well, be ready.
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Figure 5.1: A abstract example for a deterministic environment. The environ-

ment is represented by a graph, every state is a node, every action

an edge. The reward is written on the edges. A policy is visualized

by bold edges. For this policy, the value Vπ
is denoted inside the

nodes (with γ = 1).

state. Depending on your beliefs about photocopiers, this transition

is deterministic. The state can also stay the same: the photocopier’s

metaphysical condition which is affected for example by verbal threats

is not reflected in the state space usually.

Our goal is to find an optimal policy π : S → A that tells us which

action to pick in a state. A policy is optimal, if it maximizes the total re-

ward received. The (positive or negative) reward is defined by utilizing

a reward function

R : {(s, a) | s ∈ S, a ∈ As} → R,

which tells us the reward we get for picking action a in state s. Then,
let s0, s1, . . . be the sequence of states (a trajectory) we obtain when

following π with an initial state s0, i.e., s1 = P(s0, π(s0)) and so on.

The total reward received for a given policy π is then defined by the

accumulated discounted reward

Vπ(s0) := ∑
i

γiR(si, π(si)), (5.1)

where γ ∈ (0, 1] is a constant discount factorwhich diminishes delayed

rewards. For γ = 1 we speak of an See fig. 5.1 for an

abstract example.

undiscounted problem, otherwise

the problem is called discounted. The analysis for discounted problem

is usually easier.

The sum in eq. (5.1) is sometimes cut-off after a fixed number of

steps in which case we call the problem a finite horizon problem.

Often, it is natural to consider environments with terminal states.

Those are stateswhich have no actions (e.g., a game ends, a car crashes).

To fit them into the mathematical model those states get a dummy ac-

tionwhich leads back to the same terminal state with zero reward. You

may also think of those states as absorbing states. If the policy reaches a

terminal state, the sum is effectively finite because all remaining terms

are zero.

Remark. The tuple (S, {As}s∈S,P ,R) is called aMarkov decision process

(MDP). Combined with a policy we obtain a Markov chain. In a more
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8 reinforcement learning

general form, policies π are allowed to be non-deterministic or time-

dependent (non-stationary). Infinite action spaces and continuous time

are natural extensions. See the books [4, 7] for a detailed description.

The reinforcement learning problem can now be stated as the follow-

ing optimization problem: Find an optimal policy

π∗ := argmax

π
Vπ(s0)

for some s0. The accumulated discounted reward for the optimal policy

π∗ is called value function and is denoted by V(s) := Vπ∗(s).

example We continue our photocopier example. Assume we want

to copy a set of sheets of paper while combining two (!) on each new

paper. Denote this state (having a copy with two pages combined on

every new page) as terminal and define the reward to be -1 (or any

other fixed negative number) unless we reach the terminal state. An

optimal policy then is a sequence of steps which achieves this goal as

fast as possible.

bellman equation We can split up the sum eq. (5.1) in the first

and remaining terms and then obtain

Vπ(s0) = R(s0, π(s0)) + γVπ(s1),

and further, the value function fulfills the so called Bellman equation

V(s0) = max
a∈As0

(
R(s0, a) + γV(s1)

)
, (5.2)

where s1 is again given by P(s1, a). One can show, that a fixed-point of

eq. (5.2), so a function V which fulfills eq. (5.2) for every s ∈ S is a value

function. We can obtain a policy by choosing a maximizing action in

each step,

π∗(s) := argmax

a

(
R(s, a) + γV(P(s, a))). (5.3)

Such a policy maximizes Vπ∗(s) for every s.
The idea behind the Bellman equation is the Bellman optimality prin-

ciple: Suppose π∗ is an optimal policy and s0, s1, . . . is the sequence

of states when following π∗. Then, the Bellman optimality principle

states, that π∗ is also an optimal policy if we start in any later si of the

sequence (trivial, argue by contradiction). This is also known as the

dynamic programming principle.

5.1.1 Value iteration

If the operator which applies eq. (5.2),

T :
{

f : S→ R
}
→ { f : S→ R}

f 7→
(
s 7→ max

a∈As

(
R(s, a) + γ f (P(s, a))

))
,
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5.1 problem formulation 9

is a contraction on some Banach space, we get from Banach’s fixed-

point theorem that there exists a unique fixed-point which can be

computed iteratively (fixed-point iteration). For finite state spaces S
and finite action spaces A, the contraction property can be shown

quite easily, especially if γ < 1.
This idea leads to an algorithm called value iteration which is de-

scribed in algorithm 5.1. Convergence can be shown under a variety of

assumptions.

Algorithm 5.1 Value iteration.

function ValueIteration(S, {As}s∈S,R, P , γ)

Initialize V(s)← 0 for every s ∈ S.
repeat

V ← T (V)

until V did not change.

return V.

end function

5.1.2 Policy iteration

Instead of storing V we can also try to compute an optimal policy

directly. A similar algorithm, policy iteration, is based on eq. (5.3) and

is described in algorithm 5.2.

Algorithm 5.2 Policy iteration.

1: function PolicyIteration(S, {As}s∈S,R, P , γ)

2: Initialize π(s)← a for an action a ∈ As and every s ∈ S.
3: Compute Vπ

.

4: repeat
5: π(s)← argmaxa(R(s, a) + γVπ(P(s, a)) for every s ∈ S.
6: Update Vπ

.

7: until Vπ
did not change.

8: return π.

9: end function

Hint!

Exploit for terminal states s that V(P(s, a)) = 0 in algorithm 5.1, as well

as Vπ(P(s, a)) = 0 in algorithm 5.2. Furthermore, check for cycles if you

compute Vπ
in algorithm 5.2 by following π.

In line 6 we compute the value function Vπ
for the current policy π.

This step is called policy evaluation. The value function can be computed

by following the policy, or by using a fixed-point iteration. After Vπ

is computed, we update π greedily in line 5, which is called policy

improvement. See fig. 5.2 for an example.
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(a) Policy improvement.
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(b) Policy evaluation.

Figure 5.2: A step of policy improvement and evaluation for the example from

fig. 5.1. The new action is shown using a dashed edge. The next

iteration will yield an optimal policy.

One can show, that policy iteration convergesnot slower thanvalue it-

eration. Policy iteration can also be seen as a form of Newton’s method.

5.1.3 General remarks

Value and policy iteration are basic building blocks for reinforcement

learning algorithms. They themself are not considered reinforcement

learning, though. The reason is, that for reinforcement learning the

learning algorithm must not explicitly use the model of the system

(P in this case). While model based reinforcement learning exists, there,

the algorithm learns the model from observations, it is not given as

an input. Often, software simulations of environments are used to

test reinforcement learning algorithms. There, the model used for the

simulationmust not be available to the learning algorithm. In practical

applications this requirement of an a priori unknown model might be

weakened.

In the form described here, value and policy iteration are only ap-

plicable with small, finite state and action spaces. For infinite or large

state spaces we can neither iterate through all states, nor store Vπ
. In

this case one can use supervised learning (function approximation) in

order to represent Vπ
or π using samples. We will see an example

for such a method below. For linear function approximations there is

theory available reaching back to the 80s.
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5.2 alternating markov games 11

5.2 alternating markov games
Related: Stochastic

Games, Competitive

Markov Decision

Processes

In this section we will apply value and policy iterations to a popular

problem class: games. In AI, board games were one of the first things

people tried to tackle. Many board games can be modeled as a simple

dynamic system which is easy to implement, fast to run, fun to play,

but at the same time hard tomaster. Some examples are chess, checkers

(English draughts), and Go.

In a game with N players which pick their action one after another,

we assign a policy πi to each player. A policy πi is called a best response

if it maximizes the total reward received when playing against previ-

ously fixed policies of all other players. To compute a best response

fix all policies except for one, the resulting game is then an example

for an environment as described in section 5.1. Usually, we want to

find a set of policies π∗1 , . . . , π∗N such that every policy π∗j is a best

response to the other policies π∗1 , . . . , π∗j−1, π∗j+1, . . . , π∗N . This is called

aNash equilibrium
3
and its existence is known for the class of games we

consider. Assuming that all opponents always have a best-response, a

perfect player will always want to follow π∗j as any deviation leads to

a reduced reward.

We only consider games for two payers, black and white, which

take actions in alternating order. The game state is fully observable

(perfect information) by each player, this means there are, for example,

no hidden cards. Each player has a reward functionRi and we assume

that

R1(s, a) = −R2(s, a) for all s ∈ S, a ∈ As. (5.4)

A state encodes which player has to pick an action, so eq. (5.4) implies

that the reward black receives for an action of white has the opposite

sign as the reward white receives for her ownmove. With other words,

we assume a zero-sum game.

states of equal value Often one can tell a priori which states

will have equal value by using symmetries. The value of a Tic-tac-toe

(noughts and crosses) board state for example is invariant under ro-

tation and reflection if both players are perfect. To save computation

we therefore consider equivalence classes of states which are known

to have equal value. The accompanying material contains the imple-

mentation of two games and both implementations provide a function

which maps any game state to a unique representative of its equiv-

alence class. This representative is called the normalized state in the

code.

Because of the zero-sum assumption we only need to compute one

value function V which maps a state s to the total reward received for

the current player. Similarly, only one reward function R is needed.

3 Go watch the (not so biographic) movie “A Beautiful Mind” (not now).
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12 reinforcement learning

(a) Tic-Tac-Toe (b) L-Game

Figure 5.3: Two visualized states of the board games Tic-Tac-Toe and the L-

Game.

The rewardR(s, a) shall give the reward for the player who has to pick

an action in state s. With other words, V andR always return the value

and reward for the current player.

5.2.1 Value iteration for alternating games

Unless there is no particular reason one typically wants to find a policy

which is optimal against a perfect player. But neither π∗1 nor π∗2 are

available at the beginning. The Bellman equation 5.2 applies also for

the two-player game and value iteration is known to converge in our

case. In the following task the value iteration algorithm has to be

adapted to our representation of the value function and reward in the

two-player game setting.

Task 5.1. Use the provided notebook as a template.

(b) Modify algorithm 5.1 and implement it for alternating games.

(c) Test your implementation for Tic-tac-toe and the L-Game. Use a ±1
reward on terminal states, depending on whether the current player lost

or won, and a zero reward otherwise.

Hint!

For task 5.1 (b) apply a minor change to T . Take the normalized states and

how we use V andR into account.

Remark. Tic-tac-toe has 5,478 states and only 765 up to reflection and ro-

tation. The L-Game has 18,368 states and 2,296 up to reflection, rotation

and player’s switched.

We will now use the value function of the L-Game to analyze it and

get an improved policy.
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Task 5.2.

(a) Compute the number of states with negative value for the L-Game. How

many of those are terminal? What does it mean that a state has negative

value but is not terminal (given our specific reward function)?

(b) Let the agent play against itself several times from the non-terminal

states with negative value. Report the number of moves until the game

finishes.

(c) Create a new reward based on the behavior from (b) to improve the

L-Game policy. Be careful to preserve the zero-sum property.

5.2.2 Computing π∗1 and π∗2 through self-play

The policy iteration algorithm for alternating games is less straight-

forward. Themajor difference is thatwe have to iterate over two polices

until their value functions are equal (more precisely, until they assign

values of opposite sign to each state). While policy evaluation is easily

adapted, policy improvement is not clear. The following steps lead to

convergence:

1. Update π1 greedily (as before).

2. Compute π2 as a best response to the updated π1.

The best response can be computed using policy iteration as in sec-

tion 5.1 because the opponent’s policy is fixed.

We now implement a variant of policy iteration for games.

Task 5.3.

(a) What is the environment for black? What is the environment for white?

Why is the assumption on the environment made in section 5.1 no

longer fulfilled when both policies are updated (self-play)?

(b) Implement the adapted policy improvement and policy evaluation.

(c) Why does the provided code compute two value functions in each itera-

tion?

(d) (Optional bonus task) It is likely that your policy improvement im-

plementation gets trapped in an infinite loop for the L-Game. Why is

that? Can you fix it?

Hint!

When implementing policy evaluation make sure to sum up the rewards for

a trajectory correctly.
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5.3 deep q-learning

As reinforcement learning algorithms do not have a model a priori, for

example, the update

V(s)← max
a∈As

(
R(s, a) + γV(P(s, a))

)
is not possible since P(s, a) is not available. The algorithm can only

interact with the environment by

• reading the current state and reward, or by

• applying an action.

When an action is applied, the environment returns a reward and the

new state. The system dynamics P are not visible, the environment is

a black box. With other words, the agent can only observe trajectories in

the state space.

A very popular idea is to store the value instead of states for state-

action pairs (s, a) in a new function Q : S× A→ R. A variant of value

iteration works like this, we initialize Q and then iterate:

1. Let s be the current state, apply an action a, for example a =

argmaxa∈As
Q(s, a) and observe a reward r and the new state s′.

2. Update Q(s, a)← r + γ maxa′∈As′
Q(s′, a′).

Observe that this scheme does not use P explicitly. The first step can

be interpreted as a single step of policy evaluation, and the second

as single step of policy improvement. We refer to this algorithm as

Q-learning. The immediate switch between policy improvement and

evaluation is very closely related to the so called SARSA algorithm,

which got its name after the five variables, s, a, r, s′, and a′.

q-value approximation We now assume that S is too large to

store and replace Q(·) by an approximation Qθ(·) which is parame-

terized by a finite set of real values θ. A common choice is a linear

approximation

Qθ(·) = ∑
k

θk fk(·)

for a set of (feature) maps fk. The update of Q

Q(s, a)← r + γ max
a′∈As′

Q(s′, a′)

is then replaced by a step of gradient descent

θ← θ+ α
([

r + γ max
a′

Qθ(s′, a′)
]
−Qθ(s, a)

)
∇θQθ(s, a),
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(a) Value function (b) Initial state

Figure 5.4: The value function of the mountain car environment (computed

with sparse grids [3]) and a visualization of the state. A car which

is under-powered has to reach the top of the mountain right.

The state consists of a position in [−1.2, 0.6] and a velocity in

[−0.07, 0.07].

with a step size α. The objective in this case was the mean-squared

error

1
2

(
y−Qθ(s, a)

)2
, with target y = r + γ max

a′
Qθ(s′, a′).

For linear approximations convergence can be shown under certain

assumptions [11]. It is known for a long time that nonlinear approxi-

mations are tricky (divergent) [11].

ε-greedy-policies Sincemaxa(R(s, a) + γ maxa′ Q(P(s, a), a′)) is
no longer feasible, we need to ensure during training, that we get

observations of transitions for every actions a in a state s. If a is always

picked using the maximum, we could miss a trajectory/observation

for a lucrative action. In other words, it is important to explore the

state system and try actions which under the current approximation

are estimated to have lower value. The balance between trying those

actions and following the best action is called exploration vs. exploitation.

We will use a so called ε-greedy-policy, which picks a random action

with probability ε, and amaximizing action otherwise.During training,

ε is decreased steadily.

5.3.1 Q-Networks

With the seminal achievements of deep neural network, the idea to try

a neural network as an approximation Qθ, where θ denote the weights,

was popularized by a very influential paper from 2015, published in

Nature [6]. In this work, the authors managed to find a single DNN

architecture and a reinforcement learning algorithm (with fixed hy-
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perparameters
4
) which could achieve superhuman performance on 49

Atari games
5
. As a true reinforcement learning, no rules of the game

(system dynamics) were available to the agent. In fact, a state con-

sisted only of the last four frames
6
of the game, so the agent sees a

visual representation of the game. Twomain modifications were made

to the approximated Q-learning algorithm described above. The re-

sulting algorithm is called DQN (Deep Q-network). Atari games are

now a benchmark in reinforcement learning research (called “Arcade

Learning Environment”).

In [6] three problems are named with classic Q-learning which they

tried to tackle with DQN:

• The observed transitions s, a, r, s′, a′ are correlated (theory, for

example Monte Carlo, needs independence).

• The targets y for updating Qθ(s, a) are computed using Qθ itself.

This leads to oscillations.

• Small changes in Qθ can change policies significantly. With oscil-

lations this can then cause divergence.

experience replay To get less correlated transitions, a technique

called experience replay is used. During training the observed transi-

tions (s, a, r, s′) are collected in a set, which is referred to as replay

memory. When the network is updated, transitions are sampled from

this memory and a gradient step is performed for this batch. In the

original work the samples were drawn uniformly, but a subsequent pa-

per [9] proposes to draw the samples using, for example, |y−Q(s, a)|
as weights. With a weighted sampling, a batch is more likely to contain

transitions where Qθ has a high error. This method is called prioritized

experience replay, an implementation is provided in the material.

decoupled targets Instead of computing the targets y using Qθ,

a second instance of target weights θ̂ is used:

y = r + γ max
a′

Qθ̂(s
′, a′).

Periodically, the update θ̂ ← θ is performed. Only θ is updated by

gradient descent. Q-learning is known to overestimate values (non-

uniformly). An existing solution for this issue was adapted to DQN

resulting in Double DQN [14], abbreviated as DDQN. It boils down to

computing the targets by

y = r + γQθ̂

(
s′, argmax

a′
Qθ(s′, a′)

)
,

4 For example, the step size is a hyperparameter, or the ε used for the ε-policy, or the

batch size, training steps, preprocessing, etc. The weights of the network were trained

new for each game.

5 Old video games, in the style of Tetris. You know Tetris, right?

6 A single picture of the game’s screen. Typical games show 30 frames or more per

second.
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i.e., the maximizing action a′ is selected using the (online) weights θ,

and the Q-value is then computed with θ̂.

The training for DDQN is shown in algorithm 5.3. The parameters

listed there are

• The maximal number of steps nmax.

• The number of steps n
replay

after which each time a gradient step

is performed on θ using a batch from the replay memory.

• The number of steps n
update

after which the target weights are

updated each time.

• A preprocessing map φ which maps S to a (possibly equal) state

space Ŝ. For example, φ could normalize the data.

• The parameters for the ε-policy. The initial value ε0 (e.g., 1.0), the
final value ε∞ (e.g., 0.01), and the number of steps nε between

which ε is linearly decreased from ε0 to ε∞.

Often, an environment has terminal states. This is not explicitly han-

dled in algorithm 5.3. When s′ is terminal, the environment is reset.

The time between such terminal states is called an episode.

Another inaccuracy due to simplification is that for prioritized ex-

perience replay sample weights are returned by the replay memory.

Those sample weights are used in the mean-squared loss. See the ma-

terial for details.

5.3.2 Car Racing

The Python package gym by OpenAI provides implementations of

environments for reinforcement learning. One such environment is

the car racing environment. The agent controls a racing car on a track.

The simulation is done in 2D, the state space is the bird’s-eye view of

the car and its closer surroundings, as well as the current velocity and

momentum
7
.

The reward function gives a +5 reward for every track tile touched

with the applied action, as well as −0.1 no matter what. An optimal

policy is expected to touch as many track tiles as fast as possible.

The car simulation is relatively sophisticated, it incorporates, for

example, friction and inertia. It is possible to drift.

Task 5.4. Implement DDQN and test it on environments.

(a) Implement algorithm 5.3. The accompanying material contains a lot of

help and many parts are already implemented or sketched.

7 We modified the environment, those measurements are now returned as numbers.

Previously, they were added as a plot to the frame.
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Algorithm 5.3 Double Deep Q-Learning

function TrainDDQN(nmax, n
replay

, n
update

, n
batch

, φ, ε1, ε∞, nε)

Initialize the replay memory using a random policy.

Initialize the target weights θ̂← θ.

for step i← 1 to nmax do
s← current state, a← EpsilonPolicy(s, i, ε1, ε∞, nε).

Apply a, observe reward r and the new state s′.
Store the transition (φ(s), a, r, φ(s′)) in the replay memory.

if i ≡ 0 mod n
replay

then . Train with batch from memory.

Sample a batch (φj, aj, rj, φ′j)
n
batch

i=1 from the replay memory.

yj =

rj if φ′j is terminal,

rj + γQθ̂

(
φ′j, argmaxa′ Qθ(φ

′
j, a′)

)
else.

.

Perform a gradient descent step on

1
n
batch

∑n
batch

j=1 (yj −Qθ(φj, aj))
2.

end if
if i ≡ 0 mod n

update
then

Update the target weights θ̂← θ.

end if
end for
return θ.

end function
function EpsilonPolicy(s, i, ε1, ε∞, nε)

ε← ε∞(min{i,nε}−1)+ε1(nε−min{i,nε})
nε−1 . . Decrease ε linearly.

return

random action with probability ε,

argmaxa Qθ(φ(s), a) else.

end function

(b) Check your implementation with the mountain car environment. Pick

a design for the Q-network, choose hyperparameters, train the agent.

Visualize the final policy and report the reward. An implementation of

the environment is included in the gym package.

(c) (Optional bonus task) Do the same as in (b) for the car racing envi-

ronment. To simplify the task, the racing track is fixed. You can change

this by removing the random number generator seed.

Attention!

The car racing environment needs a large replay memory (we tried 100k to

1M transitions), and at lot of steps (we got good results with 1M and more).

So, on the hand you need roughly 10 GB of memory (a laptop might not have

this much), and on the other hand, training will take several hours (easily 10h

or more). The batch size, network size, and frequency of evaluations also has

an influence. With other words: Do not start the evening before the deadline

if you want us to see your results.
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Hint!

The network architecture used in the DQN paper [6] is a CNN where the

first hidden layer convolves 32 filters (size 8× 8, stride 8) and ReLU. Then, 64

filters (size 4× 4 , stride 2) plus ReLU follow. The third hidden layer consists

of 64 filters (size 3× 3, stride 1) plus ReLU. A fully-connected layer with 512

and ReLU is added before the output layer. The input was preprocessed by

extracting the luminance from RGB and scaling it to 84× 84. The appendix

of [6] contains very detailed and nicely structure information which are in-

valuable for reproducing the results. In fact, the whole paper is excellent and

reads nicely.

5.3.3 Room for improvement

Algorithm 5.3 was a milestone for reinforcement learning but it does

not reflect the state-of-the-art for the Arcade Learning Environment.

Similar to double Q-learning and prioritized experience replay, more

modifications were proposed. In [5] several of those improvements

were combined and their attribution tested. There, one major improve-

ment was attributed to n-step learning: Instead of considering the re-

ward of one step as a target, y = r + γV(s′), n steps are used to

compute y, y = ∑n
i=1 γi−1R(si, ai) + γnV(sn+1). The idea is not new,

instead it was adapted for deep Q-learning.

Sometimes so called exploring starts are employed. The idea is to start

the environment not in its initial state, but to choose a random state. For

the car racing environment, this could be restricted to start randomly

on the track, or slightly off the track, or with different speed.

In the current state space of the car racing environment the agent can

only see a portion of the track. Unless the track is fixed, it is likely that

a better policy is possible if, for example, the next curve can be seen.

This could be achieved by zooming out and increasing the resolution.

The action space for the car racing environment has to be discretized

for DQN. The actual action space is continuous, so a policy which can

use the full, continuous space is potentially better. There are reinforce-

ment learning algorithms for continuous action spaces, for example

the policy gradient methods [12], one recent example is PPO [10]. The

basic idea of policy gradient methods is to approximate π using a, say,

neural network πθ. Then, a measure for the reward is maximized w.r.t.

to θ.

5.4 fixing wrong impressions

After reading this chapter you might have thought the following state-

ments are true. This section tries to prevent that.

• A value function does always exist, furthermore, it is unique and

continuous. (none of those claims are true)
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• There is always a stationary policy, which is optimal. (not true, cf.

finite horizon problems)

• There is always a deterministic policy, which is optimal. (not true,

cf. partially observed problems)

• The cost function has to be a sum of rewards. (no, but most

common case, though)

• A Nash equilibrium does always exist and it is unique. (no)

• The mean-squared error is optimal. (not clear, in fact, DQN is

using a clipped variant)

• There is a strong, theoretical analysis of popular reinforcement

learning algorithms. (no, “more research is needed”)

• You can compute state-of-the-art StarCraft policies on your lap-

top in a day. (no, it takes weeks or months on big, specialized

clusters)

5.5 closing remarks

In this chapter you got an impression of what reinforcement learning

does and how. Reinforcement learning ismixture of different fields, for

example supervised learning, game theory and planning.

Research is done to scale reinforcement learning by searching for par-

allel and distributed algorithms, i.e., to find ways such that an agent

can be computed utilizingmultiplemachines (manyCPUs, GPUs, etc.).

Also, amajor concern is sample efficiency: The enormous training steps

do not seem justified, there is hope to lower the samples needed, which

would make reinforcement learning also more available. Another rea-

son to search for more sample efficient algorithms is that on real world

environments one step is more costly compared to a simulation. There

are several works which try to pretrain an agent using a simulation

and transferring the knowledge to the real world, in those examples

people use robotic arms.

In games, most recently an agent was presented to beat professional

strategic video game StarCraft II players under somewhat realistic

conditions. A real time strategy game like StarCraft II is considered

harder than Go, for example: Themore complicated partially observed

state, the much bigger action space, the much higher number of steps

for a typical game (60 frames per second vs. a dozen total moves in a

Go game).

On the theoretic side, the books by Bertsekas are interesting [1, 2]

(see also all his books), as well as the book by Szepesvári [13]
8
. The

8 A regularly updated draft is available online at https://sites.ualberta.ca/

~szepesva/papers/RLAlgsInMDPs.pdf.
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same author publishes a freely available draft of a book
9
on n-armed

bandits, which are closely related to reinforcement learning. More

generally, the already mentioned book by Sutton and Barto is a classic

[11]
10

and recommended for the beginning.
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