

## Scientific Computing II

Sommer Semester 2019 Prof. Dr. Carsten Burstedde Biagio Paparella



Exercise Sheet 1.

Due date: Tue, 16.04.2019.

**Exercise 1.** (Compactly supported functions form a proper subspace) (5 Points) Let  $\Omega$  be a bounded domain. With the help of Friedrichs's inequality, show that the

constant function u = 1 is not contained in  $H_0^1(\Omega)$ , and thus  $H_0^1(\Omega)$  is a proper subspace of  $H^1(\Omega)$ .

**Exercise 2.** (PF inequality for higher order) (5 Points)

Prove the following claim: If  $\Omega$  is bounded, then  $|\cdot|_m$  is a norm on  $H_0^m(\Omega)$ which is equivalent to  $\|\cdot\|_m$ . If  $\Omega$  is contained in a cube with side length s, then  $|v|_m \leq ||v||_m \leq (1+s)^m |v|_m$  for all  $v \in H_0^m(\Omega)$ 

Hint: induction.

**Exercise 3.** (Function space inclusions)

Propose a function in C[0,1] which is not contained in  $H^1[0,1]$ . To illustrate that  $H_0^0(\Omega) = H^0(\Omega)$ , propose a sequence in  $C_0^\infty(\Omega)$  which converges to the constant function v = 1 in the  $L_2[0, 1]$  sense.

**Exercise 4.** (Directional derivatives)

By using the definitions given in class, compute the directional derivatives of:

- $f: U \times V \to U$ , given by  $(u, v) \mapsto u$ ,
- $q: U \to U \times V$ , given by  $u \mapsto (u, c)$ , for a fixed constant  $c \in V$ ,
- $h: U \times V \to W, (u, v) \mapsto h(u, v)$  bilinear.

The chain rule reads:  $D_x(f \circ g)(\bar{x}) = D_{q(x)}f \circ D_xg(\bar{x})$ . By using exclusively the rules above, prove the *product* rule for real-values functions: Given  $f, g: U \to \mathbb{R}$ , show that  $D_x(fg)(\bar{x}) = D_x f(\bar{x})g(x) + f(x)D_x g(\bar{x})$ 

P.S.: in this exercise it is not required to show full Fréchet differentiability.

```
(5 Points)
```

(5 Points)