

Scientific Computing II

Sommersemester 2019 Prof. Dr. Carsten Burstedde Biagio Paparella

Exercise Sheet 10.

Due date: 25.06.2019.

(5 Points)

Exercise 1. (Adjoint operator: Hilbert space case) (5 Points)

Let $L: X \to Y$ be a linear operator between Banach spaces. We defined its adjoint to be the map $L': Y' \to X'$ behaving like L'(l) = l(L) for $l \in Y'$.

On the other hand, for an operator $A: H \to K$ between Hilbert spaces, the definition for the adjoint A^* relies on the scalar product: it is the unique map $A^*: K \to H$ such that $(Ah, k)_K = (h, A^*k)_H$. Explain in details why the two definitions are perfectly compatible.

Exercise 2. (An easy density criteria) (5 Points)

Let H be a complex Hilbert space and $T: D(T) \to H$ a linear operator, where $D(T) \subset H$ is a dense subspace in H(D(T) = H, possibly). Prove that if (u, Tu) = 0 for any $u \in D(T)$ then T = 0, i.e. T is the null operator (sending everything to 0).

Exercise 3. (The solution u is continuous w.r.t f)

Let's work in the space $H = H_0^m(\Omega)$, where we try to solve an elliptic PDE with our usual notation (f for the right side, a the elliptic bilinear form with constant α , u the weak solution). Prove that:

(i) for each $v \in H$, $||v||_0^2 \le ||v||_{-m} ||v||_m$

(ii)
$$||u||_m \le \alpha^{-1} ||f||_{-m}$$

Exercise 4. (From a linear mapping to an elliptic form) (5 Points)

Let $a: V \times X \to \mathbb{R}$ be a positive symmetric bilinear form satisfying the hypothesis of theorem 2.7 (following our notes, or equivalently 3.6 from Braess). Show that a is elliptic, i.e. $a(v, v) \ge \alpha ||v||_V^2$ for some $\alpha > 0$.