

Scientific Computing II

Sommersemester 2019 Prof. Dr. Carsten Burstedde Biagio Paparella

Exercise Sheet 2.

Due date: Tue, 23.04.2019.

Exercise 1. (An example for a non-closed range) (5 Points) In connection with example 1.17, consider the linear mapping:

$$L: l_2 \to l_2$$
$$(Lx)_k = 2^{-k} x_k$$

Show that it's continuous and its range is not closed. Hint: The closure contains the point $y \in l_2$ with $y_k = 2^{-k/2}$, k = 1, 2, ...

Exercise 2. (An ODE example, part 1 - corrected type $(H^1, \text{ not } H^1_0)$) (5 Points) For functions $u : [0, 1] \to \mathbb{R}$, consider the problem:

$$-u'' + u' + u = f \quad on \quad (0,1), \qquad u'(0) = u'(1) = 0$$

We choose the following variational formulation:

•
$$V = \{ f \in H^1(0,1) \text{ s.t. } f'(0) = f'(1) = 0 \}$$

•
$$a(u,v) = \int_0^1 (u'v' + u'v + uv) dx$$

•
$$F(v) = (f, v)$$

Show that the form $a(\cdot, \cdot)$ is not symmetric, but is continuous and coercive.

Exercise 3. (An ODE example, part 2)

(5 Points)

(5 Points)

By referring to the previous exercise, what happens to coercivity if the equation is replaced by

$$-u'' + ku' + u = f$$

for a free parameter $k \in \mathbb{R}$?

Exercise 4. (Another ODE example)

Consider the symmetric, positive definite and continuous bilinear form on $H_0^1(0,1)$:

$$a(u,v) = \int_0^1 x^2 u(x)' v(x)' \mathrm{d}x$$

Consider the functional $J : H \to \mathbb{R}$ defined as $J(v) \doteq \frac{1}{2}a(v,v) - \int_0^1 v dx$. Find the appropriate operator L and $f \in H$ s.t. the weak solution of Lu = f on (0,1), u(0) = u(1) = 0 is defined to be the minimizer of J. Anyway, some computations show that such an ODE does not admit solutions in H. How do you explain this phenomenon?