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Problem 6 (Volume and perimeter length of phase fields)

The task of this exercise will be to compute the volume and perimeter length of a given
object represented by a phase field v. In our lab code a phase field will simply be treated
as a piece wise linear finite element function. To compute volume and perimeter length
the following integrals need to be evaluated:
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Using the standard finite element procedure one obtains for a discrete approximation V
of the phase field:
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That means that all terms except the last one can be computed by using mass and stiffness
matrices. For the remaining term a new class NonlinearFEOperator will be provided.
Similar to the linear case a separate class for the evaluation of the integrand has to be
provided. It must implement the method addEval which evaluates the integrand at a
given quadrature point, multiplies the results by the given scaling factor w and adds it to
the return value b. See the classes provided for an example and further details.
Of course the concept of this nonlinear operator can also be used to evaluate the whole
functional. This would save the cost for matrix assemblies but would make each evalua-
tion more involved.



Tasks:

(i) Use the provided routines to create phase fields for a circle and a bar.

(ii) Compare your approximation to the known true values.

(iii) Try to decrease the error as much as possible by:

• Changing ε and the global mesh size h. What can be said about their relation?

• Doing local adaptive mesh refinements. For this purpose you need to imple-
ment an error indicator like on problem sheet 2. Think about where the crucial
regions of the phase fields are and how they could be detected by an error
indicator.

Problem 7 (Deformation of elastic objects)

In this task an elastic object represented by a phase field will be exposed to an external
loading. The goal is to approximate its response behavior based on the partial differential
equations of linearized elasticity. On problem sheet 6 the resulting linear system of
equations was derived:E11 E21 · · ·

E21 E22
...

. . .


U1

U2

...

 =

G1

G2

...

 ,
Ekl=

∫
D C ε[ψk

i ] : ε[ψl
j ]dx

=
∫

D

(
λ tr ε[ψk

i ]1 + 2µε[ψk
i ]
)

: ε[ψl
j ]dx

In this task we however would like to prescribe a surface loading g on a part ΓN ⊂ ∂O of
the object whereas we will have homogeneous Dirichlet boundary data on ΓD ⊂ ∂O and
homogeneous Neumann boundary data g ≡ 0 on the remaining part Γ0 = ∂O\ (ΓD ∪ ΓN).
For the right hand side a boundary integral Gk :=
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has to be evaluated on
ΓN . To avoid setting up a new generic integral operator for 1D computations this may
be done manually by using the BoundaryIterator and computing the integrals on the
segments explicitly. For the Dirichlet data the already known DirichletBoundaryMask
will be used. The remaining part Γ0 does not require any further treatment.
As the library will be updated to support vector valued problems there will be a new
dimension template parameter Dim for the LinearFEOperator and additional arguments
for the bilinear forms.

Tasks:

(i) Complete the bilinear form PhasefieldElastStiffBilf needed to set up the stiffness
matrix for the linearized elastic problem. It needs to receive an external phase
field (with values in [−1, 1]) upon construction which will be used to interpolate
between the usual Lamé-Navier tensor A and a weak material B:
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(ii) Test your implementation using the main program provided.


