
Computer lab Numerical Algorithms
Winter term 2012/2013

Prof. Dr. M. Rumpf – B. Geihe, B. Heeren

Problem sheet 6 January 15th, 2012

Problem 8 (Gradient descent)

To find a local minimum of a function E : Rd → R+ we want to apply a gradient descent
method. Starting at some initial value x0 ∈ Rd we compute iteratively a sequence (xk)k
with E(xk) > E(xk+1). At a fixed iteration step k ≥ 0 we are thus looking for a direction
dk and some stepsize τk > 0, such that xk+1 := xk + τkdk fulfills the above property.

As the negative gradient is known to be the direction of steepest descent one chooses
dk = −∇E(xk). To achieve convergence it is crucial that E(xk)k decreases fast enough.
This is ensured by choosing a so called efficient stepsize, e.g. by applying Armijo’s rule.

Algorithm 1: Gradient descent with stepsize control

Input: Initial value x0 ∈ Rd, tolerance ε ∈ R, max. number of iterations kmax ∈N

notTerminated = true;
k = 0
while notTerminated do

compute descent direction dk = −∇E(xk)
find an admissible stepsize τk
set xk+1 = xk + τk dk
k = k + 1
if ‖dk‖ ≤ ε or k = kmax then

notTerminated = false;

Algorithm 2: Armijo stepsize control
Input: current location and direction x, d ∈ Rn, parameters β ∈ (0, 1), 0 < τmin < τmax.
Output: maximal stepsize τ? = 2i τ ∈ [τmin, τmax], i ∈ Z, such that

E(x + τ? d) ≤ E(x) + β τ?d · ∇E(x).

Choose initial stepsize τ
Compute the expected slope se = d · ∇E(x)
and the actually realized slope sr = (E(x + τ d)− E(x))/τ
if sr > β se then

while sr > β se and τ > τmin do
τ = τ/2
update sr

else
while sr ≤ β se and τ ≤ τmax do

τ = 2 τ
update sr

τ = τ/2
if τ ≤ τmin then

return No stepsize found.

To choose a reasonable initial stepsize τ one could either use the final stepsize τk−1
of the previous iteration step or make use of a local quadratic approximation of the
function f (λ) := E(x + λd). Note that f ′(λ) = ∇E(x + λd) · d, i.e. f ′(0) = −|d|2. We
now set τ = arg min p(λ) where p is the unique quadratic function with p(0) = f (0),
p′(0) = f ′(0) and p(λ̄) = f (λ̄) for some suitable λ̄ > 0, e.g. λ̄ = τk−1.

Note that evaluations of the objective functional E and especially its derivative ∇E are in
general very time consuming. Hence it is important to reduce the number of evaluations
as far as possible and to store corresponding terms to avoid repetitive computations!

Tasks:

(i) Complete GradientDescent::performSingleStep().

(ii) Implement GradientDescent::findStepsizeWithArmijo().

(iii) Write a simple test energy and a corresponding gradient and test the gradient
descent.

Note: Your energy functional as well as the corresponding gradient should be derived
from a suitable Operator<DomType,RangeType>. You can check your derivative by
means of DerivativeChecker.

Problem 9 (1D Shape optimization: Wall example)

Consider a wall made up of concrete with a high thermal con-

0 1y

û1

a1 a2

û2

ductivity a1 > 0 and low material costs c1 on one side and an
insulating material with a low thermal conductivity 0 < a2 < a1
but high costs c2 > c1 on the other side. Given inner and outer
temperatures û1 and û1 the heat loss shall be minimized while
keeping the overall material costs low. This can be phrased as
a minimization problem under the constraint that u minimizes
the heat functional, i.e.

J
[
y, u[y]

]
= (c1y + c2(1− y))− (a2u′(1))

subject to u[y] = v[y] + g
v[y] = arg min

v(0)=v(1)=0
E[y, v]

with some function g : [0, 1]→ R, g(0) = û1 and g(1) = û2, and

E[y, v] :=
1
2

∫ 1

0
ay(x)|v′(x)|2 + ay(x)v′(x) · g′(x)dx , ay(x) =

{
a1, 0 ≤ x ≤ y
a2, y < x ≤ 1

.

Now we discretize Ω = [0, 1] and u : Ω → R by means of linear Finite Elements.
Therefore we choose N + 1 nodes xi = i h, i = 0, . . . , N, with h = N−1, and consider linear
basis functions φi uniquely defined by φi(xj) = δij. If we now write uh(x) = ∑ uiφi(x),
ū := (ui)i ∈ RN+1, and define a weighted stiffness matrix Ay ∈ RN+1,N+1 by

(Ay)ij :=
∫ 1

0
ay(x)φ′i(x) · φ′j(x)dx ,

we can rewrite E[y, vh] = E[y, v̄] = 1
2 Ayv̄ · v̄ + Ayv̄ · ḡ and hence J[y, uh] = J[y, ū] as

J[y, ū] = (c1y + c2(1− y))− Ayū · eN+1

subject to ū = v̄ + ḡ
Ayv̄ = −Ay ḡ

where gi = 0, 0 < i ≤ N, and g0 = û1, gN+1 = û2. Note, that we have to account for the
zero boundary conditions by applying a suitable boundary mask to Ay.

To minimize J[y] = J[y, ū] we want to apply a gradient descent method. Hence we need
to compute

J,y[y, ū] = (J,y)[y, ū]− E,uy[y, ū] p̄ = (c1 − c2)− A′yū · p̄ ,

where p̄ solves the dual problem E,uu[y, ū] p̄ = (J,u)[y, ū] and ū satisfies the constraint.
Note, that E,uu[y, ū] = Ay and (J,u)[y, ū] = A′yeN+1.

Tasks:

(i) Implement a function to “manually” assemble Ay and account for the jump in a(x).

(ii) Derive the matrix A′y and compute E,uy[y, ū] p̄ = A′yū · p̄.

(iii) Implement J and J,y and apply the gradient descent method to obtain an optimal y.

Note: You can check your numerical results by comparing them to the analytical values!

