Institut fur Numerische Simulation U n IVe rS |tatbon n

Rheinische Friedrich-Wilhelms-Universitat Bonn

Computer lab Numerical Algorithms
Winter term 2012/2013

Prof. Dr. M. Rumpf — B. Geihe, B. Heeren
Problem sheet 6 January 15th, 2012

Problem 8 (Gradient descent)

To find a local minimum of a function E : R? — R* we want to apply a gradient descent
method. Starting at some initial value xy € RY we compute iteratively a sequence (x;)i
with E(xg) > E(xx;1). At a fixed iteration step k > 0 we are thus looking for a direction
dr and some stepsize T > 0, such that xq := x; + T d) fulfills the above property.

As the negative gradient is known to be the direction of steepest descent one chooses
dr = —VE(xx). To achieve convergence it is crucial that E(x;); decreases fast enough.
This is ensured by choosing a so called efficient stepsize, e.g. by applying Armijo’s rule.

Algorithm 1: Gradient descent with stepsize control

Input: Initial value xy € R, tolerance € € R, max. number of iterations kmayx € IN
notTerminated = true;

k=0
while notTerminated do
compute descent direction dy = —VE(xy)

find an admissible stepsize i

set xp 11 = X + Tk dk

k=k+1

if ||di|| < € or k = kmax then
notTerminated = false;




Algorithm 2: Armijo stepsize control

Input: current location and direction x,d € R", parameters € (0,1), 0 < Tmin < Tmax-
Output: maximal stepsize T = 2' T € [Tmin, Tmax), | € Z, such that

E(x+1*d) <E(x)+ptd- VE(x).

Choose initial stepsize T
Compute the expected slope s, = d - VE(x)
and the actually realized slope s, = (E(x+7d) — E(x))/T
if s, > Bs, then
while s, > Bs, and T > Tmin do

T=1/2
update s,
else
while s, < s, and T < Tmax do
T=2T
update s,
T=1/2

if T < Tyin then
return No stepsize found.

To choose a reasonable initial stepsize T one could either use the final stepsize 7
of the previous iteration step or make use of a local quadratic approximation of the
function f(A) := E(x + Ad). Note that f'(A) = VE(x + Ad) - d, i.e. f/(0) = —|d|>. We
now set T = argmin p(A) where p is the unique quadratic function with p(0) = f(0),
p'(0) = f'(0) and p(A) = f(A) for some suitable A > 0, e.g. A = ;1.

Note that evaluations of the objective functional E and especially its derivative VE are in
general very time consuming. Hence it is important to reduce the number of evaluations
as far as possible and to store corresponding terms to avoid repetitive computations!

Tasks:
(i) Complete GradientDescent::performSingleStep().
(ii) Implement GradientDescent::findStepsizeWithArmijo().

(iii) Write a simple test energy and a corresponding gradient and test the gradient
descent.

Note: Your energy functional as well as the corresponding gradient should be derived
from a suitable Operator<DomType,RangeType>. You can check your derivative by
means of DerivativeChecker.



Problem g (1D Shape optimization: Wall example)

Consider a wall made up of concrete with a high thermal con-
ductivity a; > 0 and low material costs ¢; on one side and an LR z
insulating material with a low thermal conductivity 0 < a, < a4y ay _ o a2
but high costs c; > c; on the other side. Given inner and outer -
temperatures 71; and 7, the heat loss shall be minimized while |
keeping the overall material costs low. This can be phrased as FE[
IT

a minimization problem under the constraint that ¥ minimizes
the heat functional, i.e.

|
Iy, ulyl] = (cy + c2(1 = y)) — (a2u'(1)) 0y 1
subject to ulyl = vyl +g
v[y] = argmin E[y,v]
v(0)=v(1)=0

with some function ¢ : [0,1] — R, ¢(0) = 41 and g(1) = 7, and

Ely, 0] := ;/01 ay (x)[0 (x) [ + ay (x)0' (x) - §'(x) dx, ay(x) = {Z:' 5??{?? :

Now we discretize ) = [0,1] and u : QO — R by means of linear Finite Elements.
Therefore we choose N +1nodes x; =ih,i =0,...,N, withh = N1, and consider linear
basis functions ¢; uniquely defined by ¢;(x;) = J;;. If we now write u;,(x) = ¥ u;¢;(x),
i := (u;); € RN*! and define a weighted stiffness matrix A, € RNTIN+1 by

1
(A= [ ay(09l(x) - (x) dx,
we can rewrite E[y, v;] = Ely, 0] = 3A,0 -0+ A,0- g and hence J[y, u;] = J[y, 1] as

Iy a] = (ey + (1 —y)) — Ayt - ena
subject to U=0+g

!

where ¢, = 0,0 <i < N, and g9 = 71, gn+1 = #l2. Note, that we have to account for the
zero boundary conditions by applying a suitable boundary mask to A,

To minimize J[y| = J[y, ii] we want to apply a gradient descent method. Hence we need
to compute

July. @ = 0p)ly 8] — Ewly, #lp = (1 —c2) — Ayii-p,

where p solves the dual problem E ., [y, ii]p = (J..)[y, @] and i satisfies the constraint.
Note, that Euuly, 1] = Ay and (J.u)[y, 4] = Ayen-1.

Tasks:
(i) Implement a function to “manually” assemble A, and account for the jump in a(x).
(ii) Derive the matrix A} and compute E [y, #|p = Ayii - p.
(iii) Implement J and J , and apply the gradient descent method to obtain an optimal y.

Note: You can check your numerical results by comparing them to the analytical values!



