Computer lab Numerical Algorithms

Winter term 2012/2013
Prof. Dr. M. Rumpf - B. Geihe, B. Heeren

Problem sheet 6

January 15th, 2012

Problem 8 (Gradient descent)

To find a local minimum of a function $E: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$we want to apply a gradient descent method. Starting at some initial value $x_{0} \in \mathbb{R}^{d}$ we compute iteratively a sequence $\left(x_{k}\right)_{k}$ with $E\left(x_{k}\right)>E\left(x_{k+1}\right)$. At a fixed iteration step $k \geq 0$ we are thus looking for a direction d_{k} and some stepsize $\tau_{k}>0$, such that $x_{k+1}:=x_{k}+\tau_{k} d_{k}$ fulfills the above property.
As the negative gradient is known to be the direction of steepest descent one chooses $d_{k}=-\nabla E\left(x_{k}\right)$. To achieve convergence it is crucial that $E\left(x_{k}\right)_{k}$ decreases fast enough. This is ensured by choosing a so called efficient stepsize, e.g. by applying Armijo's rule.

```
Algorithm 1: Gradient descent with stepsize control
Input: Initial value \(x_{0} \in \mathbb{R}^{d}\), tolerance \(\epsilon \in \mathbb{R}\), max. number of iterations \(k_{\max } \in \mathbb{N}\)
notTerminated \(=\) true;
\(k=0\)
while notTerminated do
    compute descent direction \(d_{k}=-\nabla E\left(x_{k}\right)\)
    find an admissible stepsize \(\tau_{k}\)
    set \(x_{k+1}=x_{k}+\tau_{k} d_{k}\)
    \(k=k+1\)
    if \(\left\|d_{k}\right\| \leq \epsilon\) or \(k=k_{\text {max }}\) then
        notTerminated \(=\) false;
```

```
Algorithm 2: Armijo stepsize control
Input: current location and direction \(x, d \in \mathbb{R}^{n}\), parameters \(\beta \in(0,1), 0<\tau_{\min }<\tau_{\max }\).
Output: maximal stepsize \(\tau^{\star}=2^{i} \tau \in\left[\tau_{\min }, \tau_{\max }\right], i \in \mathbb{Z}\), such that
\[
E\left(x+\tau^{\star} d\right) \leq E(x)+\beta \tau^{\star} d \cdot \nabla E(x)
\]
Choose initial stepsize \(\tau\)
Compute the expected slope \(s_{e}=d \cdot \nabla E(x)\)
and the actually realized slope \(s_{r}=(E(x+\tau d)-E(x)) / \tau\)
if \(s_{r}>\beta s_{e}\) then
    while \(s_{r}>\beta s_{e}\) and \(\tau>\tau_{\text {min }}\) do
        \(\tau=\tau / 2\)
        update \(s_{r}\)
else
    while \(s_{r} \leq \beta s_{e}\) and \(\tau \leq \tau_{\max }\) do
        \(\tau=2 \tau\)
        update \(s_{r}\)
    \(\tau=\tau / 2\)
if \(\tau \leq \tau_{\text {min }}\) then
    return No stepsize found.
```

To choose a reasonable initial stepsize τ one could either use the final stepsize τ_{k-1} of the previous iteration step or make use of a local quadratic approximation of the function $f(\lambda):=E(x+\lambda d)$. Note that $f^{\prime}(\lambda)=\nabla E(x+\lambda d) \cdot d$, i.e. $f^{\prime}(0)=-|d|^{2}$. We now set $\tau=\arg \min p(\lambda)$ where p is the unique quadratic function with $p(0)=f(0)$, $p^{\prime}(0)=f^{\prime}(0)$ and $p(\bar{\lambda})=f(\bar{\lambda})$ for some suitable $\bar{\lambda}>0$, e.g. $\bar{\lambda}=\tau_{k-1}$.

Note that evaluations of the objective functional E and especially its derivative ∇E are in general very time consuming. Hence it is important to reduce the number of evaluations as far as possible and to store corresponding terms to avoid repetitive computations!

Tasks:

(i) Complete GradientDescent::performSingleStep().
(ii) Implement GradientDescent::findStepsizeWithArmijo().
(iii) Write a simple test energy and a corresponding gradient and test the gradient descent.

Note: Your energy functional as well as the corresponding gradient should be derived from a suitable Operator<DomType,RangeType>. You can check your derivative by means of DerivativeChecker.

Problem 9 (1D Shape optimization: Wall example)
Consider a wall made up of concrete with a high thermal conductivity $a_{1}>0$ and low material costs c_{1} on one side and an insulating material with a low thermal conductivity $0<a_{2}<a_{1}$ but high $\operatorname{costs} c_{2}>c_{1}$ on the other side. Given inner and outer temperatures \hat{u}_{1} and \hat{u}_{1} the heat loss shall be minimized while keeping the overall material costs low. This can be phrased as a minimization problem under the constraint that u minimizes the heat functional, i.e.

$$
\text { subject to } \begin{aligned}
\mathbf{J}[y, u[y]] & =\left(c_{1} y+c_{2}(1-y)\right)-\left(a_{2} u^{\prime}(1)\right) \\
u[y] & =v[y]+g \\
v[y] & =\underset{v(0)=v(1)=0}{\arg \min } E[y, v]
\end{aligned}
$$

with some function $g:[0,1] \rightarrow \mathbb{R}, g(0)=\hat{u}_{1}$ and $g(1)=\hat{u}_{2}$, and

$$
E[y, v]:=\frac{1}{2} \int_{0}^{1} a_{y}(x)\left|v^{\prime}(x)\right|^{2}+a_{y}(x) v^{\prime}(x) \cdot g^{\prime}(x) \mathrm{d} x, \quad a_{y}(x)=\left\{\begin{array}{ll}
a_{1}, & 0 \leq x \leq y \\
a_{2}, & y<x \leq 1
\end{array} .\right.
$$

Now we discretize $\Omega=[0,1]$ and $u: \Omega \rightarrow \mathbb{R}$ by means of linear Finite Elements. Therefore we choose $N+1$ nodes $x_{i}=i h, i=0, \ldots, N$, with $h=N^{-1}$, and consider linear basis functions ϕ_{i} uniquely defined by $\phi_{i}\left(x_{j}\right)=\delta_{i j}$. If we now write $u_{h}(x)=\sum u_{i} \phi_{i}(x)$, $\bar{u}:=\left(u_{i}\right)_{i} \in \mathbb{R}^{N+1}$, and define a weighted stiffness matrix $A_{y} \in \mathbb{R}^{N+1, N+1}$ by

$$
\left(A_{y}\right)_{i j}:=\int_{0}^{1} a_{y}(x) \phi_{i}^{\prime}(x) \cdot \phi_{j}^{\prime}(x) \mathrm{d} x
$$

we can rewrite $E\left[y, v_{h}\right]=E[y, \bar{v}]=\frac{1}{2} A_{y} \bar{v} \cdot \bar{v}+A_{y} \bar{v} \cdot \bar{g}$ and hence $\mathbf{J}\left[y, u_{h}\right]=\mathbf{J}[y, \bar{u}]$ as

$$
\text { subject to } \begin{aligned}
\mathrm{J}[y, \bar{u}] & =\left(c_{1} y+c_{2}(1-y)\right)-A_{y} \bar{u} \cdot e_{N+1} \\
\bar{u} & =\bar{v}+\bar{g} \\
A_{y} \bar{v} & =-A_{y} \bar{g}
\end{aligned}
$$

where $g_{i}=0,0<i \leq N$, and $g_{0}=\hat{u}_{1}, g_{N+1}=\hat{u}_{2}$. Note, that we have to account for the zero boundary conditions by applying a suitable boundary mask to A_{y}.

To minimize $\mathbf{J}[y]=\mathbf{J}[y, \bar{u}]$ we want to apply a gradient descent method. Hence we need to compute

$$
\mathbf{J}_{y}[y, \bar{u}]=\left(\mathbf{J}_{, y}\right)[y, \bar{u}]-E_{, u y}[y, \bar{u}] \bar{p}=\left(c_{1}-c_{2}\right)-A_{y}^{\prime} \bar{u} \cdot \bar{p},
$$

where \bar{p} solves the dual problem $E_{, u u}[y, \bar{u}] \bar{p}=\left(\mathbf{J}_{u}\right)[y, \bar{u}]$ and \bar{u} satisfies the constraint. Note, that $E_{, u u}[y, \bar{u}]=A_{y}$ and $(\mathbf{J}, u)[y, \bar{u}]=A_{y}^{\prime} e_{N+1}$.

Tasks:

(i) Implement a function to "manually" assemble A_{y} and account for the jump in $a(x)$.
(ii) Derive the matrix A_{y}^{\prime} and compute $E_{, u y}[y, \bar{u}] \bar{p}=A_{y}^{\prime} \bar{u} \cdot \bar{p}$.
(iii) Implement \mathbf{J} and $\mathbf{J}_{y y}$ and apply the gradient descent method to obtain an optimal y.

Note: You can check your numerical results by comparing them to the analytical values!

