

Computer lab Numerical Algorithms Winter term 2012/2013 Prof. Dr. M. Rumpf – B. Geihe, B. Heeren

Problem sheet 6

January 15th, 2012

Problem 8 (Gradient descent)

To find a local minimum of a function $E : \mathbb{R}^d \to \mathbb{R}^+$ we want to apply a gradient descent method. Starting at some initial value $x_0 \in \mathbb{R}^d$ we compute iteratively a sequence $(x_k)_k$ with $E(x_k) > E(x_{k+1})$. At a fixed iteration step $k \ge 0$ we are thus looking for a direction d_k and some stepsize $\tau_k > 0$, such that $x_{k+1} := x_k + \tau_k d_k$ fulfills the above property.

As the negative gradient is known to be the *direction of steepest descent* one chooses $d_k = -\nabla E(x_k)$. To achieve convergence it is crucial that $E(x_k)_k$ decreases fast enough. This is ensured by choosing a so called *efficient stepsize*, e.g. by applying Armijo's rule.

Algorithm 1: Gradient descent with stepsize control

Input: Initial value $x_0 \in \mathbb{R}^d$, tolerance $e \in \mathbb{R}$, max. number of iterations $k_{\max} \in \mathbb{N}$ *notTerminated* = true; k = 0 **while** *notTerminated* **do** compute descent direction $d_k = -\nabla E(x_k)$ find an admissible stepsize τ_k set $x_{k+1} = x_k + \tau_k d_k$ k = k + 1 **if** $||d_k|| \le e$ or $k = k_{\max}$ **then** *notTerminated* = false;

Algorithm 2: Armijo stepsize control

Input: current location and direction $x, d \in \mathbb{R}^n$, parameters $\beta \in (0, 1), 0 < \tau_{\min} < \tau_{\max}$. **Output**: maximal stepsize $\tau^* = 2^i \tau \in [\tau_{\min}, \tau_{\max}], i \in \mathbb{Z}$, such that

$$E(x + \tau^* d) \le E(x) + \beta \tau^* d \cdot \nabla E(x).$$

Choose initial stepsize τ Compute the expected slope $s_e = d \cdot \nabla E(x)$ and the actually realized slope $s_r = (E(x + \tau d) - E(x))/\tau$ if $s_r > \beta s_e$ then while $s_r > \beta s_e$ and $\tau > \tau_{min}$ do $\tau = \tau/2$ update s_r else while $s_r \le \beta s_e$ and $\tau \le \tau_{max}$ do $\tau = 2\tau$ update s_r $\tau = \tau/2$ if $\tau \le \tau_{min}$ then return *No stepsize found*.

To choose a reasonable initial stepsize τ one could either use the final stepsize τ_{k-1} of the previous iteration step or make use of a local quadratic approximation of the function $f(\lambda) := E(x + \lambda d)$. Note that $f'(\lambda) = \nabla E(x + \lambda d) \cdot d$, i.e. $f'(0) = -|d|^2$. We now set $\tau = \arg \min p(\lambda)$ where p is the unique quadratic function with p(0) = f(0), p'(0) = f'(0) and $p(\overline{\lambda}) = f(\overline{\lambda})$ for some suitable $\overline{\lambda} > 0$, e.g. $\overline{\lambda} = \tau_{k-1}$.

Note that evaluations of the objective functional *E* and especially its derivative ∇E are in general very time consuming. Hence it is important to reduce the number of evaluations as far as possible and to store corresponding terms to avoid repetitive computations!

Tasks:

- (i) Complete GradientDescent::performSingleStep().
- (ii) Implement GradientDescent::findStepsizeWithArmijo().
- (iii) Write a simple test energy and a corresponding gradient and test the gradient descent.

Note: Your energy functional as well as the corresponding gradient should be derived from a suitable Operator<DomType,RangeType>. You can check your derivative by means of DerivativeChecker.

Problem 9 (1D Shape optimization: Wall example)

Consider a wall made up of concrete with a high thermal conductivity $a_1 > 0$ and low material costs c_1 on one side and an insulating material with a low thermal conductivity $0 < a_2 < a_1$ but high costs $c_2 > c_1$ on the other side. Given inner and outer temperatures \hat{u}_1 and \hat{u}_1 the heat loss shall be minimized while keeping the overall material costs low. This can be phrased as a minimization problem under the constraint that *u* minimizes the heat functional, i.e.

with some function $g : [0,1] \rightarrow \mathbb{R}$, $g(0) = \hat{u}_1$ and $g(1) = \hat{u}_2$, and

$$E[y,v] := \frac{1}{2} \int_0^1 a_y(x) |v'(x)|^2 + a_y(x) v'(x) \cdot g'(x) \, \mathrm{d}x \,, \qquad a_y(x) = \begin{cases} a_1, & 0 \le x \le y \\ a_2, & y < x \le 1 \end{cases}$$

Now we discretize $\Omega = [0, 1]$ and $u : \Omega \to \mathbb{R}$ by means of linear Finite Elements. Therefore we choose N + 1 nodes $x_i = ih, i = 0, ..., N$, with $h = N^{-1}$, and consider linear basis functions ϕ_i uniquely defined by $\phi_i(x_j) = \delta_{ij}$. If we now write $u_h(x) = \sum u_i \phi_i(x)$, $\bar{u} := (u_i)_i \in \mathbb{R}^{N+1}$, and define a weighted stiffness matrix $A_y \in \mathbb{R}^{N+1,N+1}$ by

$$(A_y)_{ij} := \int_0^1 a_y(x)\phi_i'(x)\cdot\phi_j'(x)\,\mathrm{d}x$$

we can rewrite $E[y, v_h] = E[y, \bar{v}] = \frac{1}{2}A_y\bar{v}\cdot\bar{v} + A_y\bar{v}\cdot\bar{g}$ and hence $\mathbf{J}[y, u_h] = \mathbf{J}[y, \bar{u}]$ as

subject to

$$J[y, \bar{u}] = (c_1 y + c_2 (1 - y)) - A_y \bar{u} \cdot e_{N+1}$$

$$\bar{u} = \bar{v} + \bar{g}$$

$$A_y \bar{v} = -A_y \bar{g}$$

where $g_i = 0$, $0 < i \le N$, and $g_0 = \hat{u}_1$, $g_{N+1} = \hat{u}_2$. Note, that we have to account for the zero boundary conditions by applying a suitable boundary mask to A_{ν} .

To minimize $\mathbf{J}[y] = \mathbf{J}[y, \bar{u}]$ we want to apply a gradient descent method. Hence we need to compute

$$\mathbf{J}_{,y}[y,\bar{u}] = (\mathbf{J}_{,y})[y,\bar{u}] - E_{,uy}[y,\bar{u}]\bar{p} = (c_1 - c_2) - A'_y\bar{u}\cdot\bar{p},$$

where \bar{p} solves the dual problem $E_{,uu}[y, \bar{u}]\bar{p} = (\mathbf{J}_{,u})[y, \bar{u}]$ and \bar{u} satisfies the constraint. Note, that $E_{,uu}[y, \bar{u}] = A_y$ and $(\mathbf{J}_{,u})[y, \bar{u}] = A'_y e_{N+1}$.

Tasks:

- (i) Implement a function to "manually" assemble A_y and account for the jump in a(x).
- (ii) Derive the matrix A'_{y} and compute $E_{,uy}[y, \bar{u}]\bar{p} = A'_{y}\bar{u}\cdot\bar{p}$.
- (iii) Implement J and $J_{,y}$ and apply the gradient descent method to obtain an optimal *y*.

Note: You can check your numerical results by comparing them to the analytical values!