



## **Tutorial Numerical Algorithms**

Winter term 2012/2013 Prof. Dr. M. Rumpf – B. Geihe, B. Heeren

## Problem sheet 3

October 30th, 2012

#### Problem 1 (Red-Green refinement)

Red-Green refinement is based on the bisection of all edges in a marked triangle in one step, e.g. replacing this triangle by four (red refinement). To avoid "hanging nodes" in an adaptive grid one introduces a temporary so-called green refinement. This is realized by introducing additional edges in triangles that were affected by a green refinement of one or two neighboring triangles. However, this temporary green refinement should be replaced by a red refinement if the neighboring red-refined triangle is refined again in the next step.

Think about possible refinement patterns and write an algorithm to refine a grid which is already Red-Green refined.

### **Problem 2** (Local projection on polynomials)

Why is the local  $L^2$ -projection defined on the local FE-space instead of an appropriate space of polynomials? Consider the 1*D*-example with reference domain  $\hat{\omega} = [-1, 1]$ ,

$$T_1 = [0,2h],$$
  $T_2 = [2h,3h],$   $x_i = 2h,$   $w_i = T_1 \cup T_2$   
 $\widehat{T}_1 = [-1,0],$   $\widehat{T}_2 = [0,1],$   $\widehat{w} = \widehat{T}_1 \cup \widehat{T}_2$ 

and the affine transformation  $F: \hat{\omega} \to \omega_i$ . Let u(x) = x,  $\hat{u} = u \circ F$  and  $P_{L^2}\hat{u}$  the local  $L^2$ -projection of  $\hat{u}$  on  $\mathcal{P}_1$ , i.e.

$$\int_{\hat{\omega}} (P_{\mathrm{L}^2} \hat{u} - \hat{u}) \cdot 1 \, \mathrm{d}t = \int_{\hat{\omega}} (P_{\mathrm{L}^2} \hat{u} - \hat{u}) \cdot t \, \mathrm{d}t = 0 \,.$$

Show that the local projection error is only of first order, i.e.

$$\frac{\|u - (P_{L^2}\hat{u}) \circ F^{-1}\|_{0,2,\omega}}{\|u\|_{2,2,\omega}} \le \frac{h}{4\sqrt{3}(1+3h^2)^{\frac{1}{2}}}.$$

### **Problem 3** (Higher order interpolation estimates)

Let  $\mathcal{I}_h: H^{2,2} \to \mathcal{V}_h$  be the Lagrange interpolation, where  $d \leq 3$ , i.e.  $H^{2,2} \hookrightarrow C^0$ . Show that for  $\varphi \in H^{2,2}(\Omega)$  on  $T \in \mathcal{T}_h$ ,  $E \in \mathcal{E}(T)$ :

$$\|\varphi - \mathcal{I}_h \varphi\|_{0,2,T} \le C_1 h_T^2 |\phi|_{2,2,T}$$
  
$$\|\varphi - \mathcal{I}_h \varphi\|_{0,2,E} \le C_2 h_T^{\frac{3}{2}} |\phi|_{2,2,T}$$

# **Problem 4** ( $L^2$ a posteriori estimates)

Suppose u and  $u_h$  are solutions of  $(\tilde{P})$  and  $(\tilde{P}_h)$ , respectively, with  $f, f_h \in L^2(\Omega)$  and  $u^{\partial} = u_h^{\partial}$ . Furthermore, for every  $g \in L^2(\Omega)$  there is a solution  $\varphi_g \in H^{2,2}(\Omega) \cap \mathring{H}^{1,2}(\Omega)$  of the dual problem

$$a(v, \varphi_g) = (v, g)_{L^2} \quad \forall v \in \mathring{H}^{1,2}(\Omega)$$

with  $\|\varphi_g\|_{2,2,\Omega} \le C \|g\|_{0,2,\Omega}$ . Show that for the error estimator

$$\eta_T := \left( h_T^4 \left\| \operatorname{div}(a \nabla u_h) + f_h \right\|_{0,2,T}^2 + \sum_{E \in \mathcal{E}(T)} h_E^3 \left\| [a \nabla u_h \cdot n_E]_E \right\|_{0,2,E}^2 \right)^{\frac{1}{2}}$$

the following estimate holds:

$$||u - u_h||_{0,2,\Omega} \le C \left( ||f - f_h||_{0,2,\Omega} + \left( \sum_{T \in \mathcal{T}_h} \eta_T^2 \right)^{\frac{1}{2}} \right)$$

*Hint:* Consider the dual problem with  $g := u - u_h$  and make use of problem 3 and the straightforward estimation  $(\sum_i a_i)^2 \le c \sum_i a_i^2$  for a finite sequence  $(a_i)_{i \le n}$ .