Tutorial Numerical Algorithms

Winter term 2012/2013
Prof. Dr. M. Rumpf - B. Geihe, B. Heeren

Problem sheet 3

October 30th, 2012

Problem 1 (Red-Green refinement)

Red-Green refinement is based on the bisection of all edges in a marked triangle in one step, e.g. replacing this triangle by four (red refinement). To avoid "hanging nodes" in an adaptive grid one introduces a temporary so-called green refinement. This is realized by introducing additional edges in triangles that were affected by a green refinement of one or two neighboring triangles. However, this temporary green refinement should be replaced by a red refinement if the neighboring red-refined triangle is refined again in the next step.

Think about possible refinement patterns and write an algorithm to refine a grid which is already Red-Green refined.

Problem 2 (Local projection on polynomials)
Why is the local L^{2}-projection defined on the local FE-space instead of an appropriate space of polynomials? Consider the $1 D$-example with reference domain $\hat{\omega}=[-1,1]$,

$$
\begin{aligned}
& T_{1}=[0,2 h], \quad T_{2}=[2 h, 3 h], \quad x_{i}=2 h, \quad w_{i}=T_{1} \cup T_{2} \\
& \widehat{T}_{1}=[-1,0], \quad \widehat{T_{2}}=[0,1], \quad \widehat{w}=\hat{T}_{1} \cup \hat{T}_{2}
\end{aligned}
$$

and the affine transformation $F: \hat{\omega} \rightarrow \omega_{i}$. Let $u(x)=x, \hat{u}=u \circ F$ and $P_{L^{2}} \hat{u}$ the local L^{2}-projection of \hat{u} on \mathcal{P}_{1}, i.e.

$$
\int_{\hat{\omega}}\left(P_{L^{2}} \hat{u}-\hat{u}\right) \cdot 1 \mathrm{~d} t=\int_{\hat{\omega}}\left(P_{L^{2}} \hat{u}-\hat{u}\right) \cdot t \mathrm{~d} t=0 .
$$

Show that the local projection error is only of first order, i.e.

$$
\frac{\left\|u-\left(P_{L^{2}} \hat{u}\right) \circ F^{-1}\right\|_{0,2, \omega}}{\|u\|_{2,2, \omega}} \leq \frac{h}{4 \sqrt{3}\left(1+3 h^{2}\right)^{\frac{1}{2}}} .
$$

Problem 3 (Higher order interpolation estimates)
Let $\mathcal{I}_{h}: H^{2,2} \rightarrow \mathcal{V}_{h}$ be the Lagrange interpolation, where $d \leq 3$, i.e. $H^{2,2} \hookrightarrow C^{0}$. Show that for $\varphi \in H^{2,2}(\Omega)$ on $T \in \mathcal{T}_{h}, E \in \mathcal{E}(T)$:

$$
\begin{aligned}
& \left\|\varphi-\mathcal{I}_{h} \varphi\right\|_{0,2, T} \leq C_{1} h_{T}^{2}|\phi|_{2,2, T} \\
& \left\|\varphi-\mathcal{I}_{h} \varphi\right\|_{0,2, E} \leq C_{2} h_{T}^{\frac{3}{2}}|\phi|_{2,2, T}
\end{aligned}
$$

Problem 4 (L^{2} a posteriori estimates)
Suppose u and u_{h} are solutions of (\tilde{P}) and $\left(\tilde{P}_{h}\right)$, respectively, with $f, f_{h} \in L^{2}(\Omega)$ and $u^{\partial}=u_{h}^{\partial}$. Furthermore, for every $g \in L^{2}(\Omega)$ there is a solution $\varphi_{g} \in H^{2,2}(\Omega) \cap \dot{H}^{1,2}(\Omega)$ of the dual problem

$$
a\left(v, \varphi_{g}\right)=(v, g)_{L^{2}} \quad \forall v \in H^{1,2}(\Omega)
$$

with $\left\|\varphi_{g}\right\|_{2,2, \Omega} \leq C\|g\|_{0,2, \Omega}$. Show that for the error estimator

$$
\eta_{T}:=\left(h_{T}^{4}\left\|\operatorname{div}\left(a \nabla u_{h}\right)+f_{h}\right\|_{0,2, T}^{2}+\sum_{E \in \mathcal{E}(T)} h_{E}^{3}\left\|\left[a \nabla u_{h} \cdot n_{E}\right]_{E}\right\|_{0,2, E}^{2}\right)^{\frac{1}{2}}
$$

the following estimate holds:

$$
\left\|u-u_{h}\right\|_{0,2, \Omega} \leq C\left(\left\|f-f_{h}\right\|_{0,2, \Omega}+\left(\sum_{T \in \mathcal{T}_{h}} \eta_{T}^{2}\right)^{\frac{1}{2}}\right)
$$

Hint: Consider the dual problem with $g:=u-u_{h}$ and make use of problem 3 and the straightforward estimation $\left(\sum_{i} a_{i}\right)^{2} \leq c \sum_{i} a_{i}^{2}$ for a finite sequence $\left(a_{i}\right)_{i \leq n}$.

