Tutorial Numerical Algorithms
Winter term 2012/2013
Prof. Dr. M. Rumpf - B. Geihe, B. Heeren, S. Tölkes

Problem sheet 4

November 15th, 2012

Problem 1 (Effective tensor in 1D)
Let $Q=[0,1]$ and $a \in L^{\infty}(Q)$ with $a(x)>c>0$. Compute the effective tensor a^{*}.

Problem 2 (Effective tensor for a rotated bar pattern in 2D)
Consider $Q=[0,1]^{2}$ and $a \in L^{\infty}(Q)$ with

$$
a\left(y_{1}, y_{2}\right)= \begin{cases}a_{1}, & 0 \leq\left(y_{1}-y_{2}\right)-\left\lfloor y_{1}-y_{2}\right\rfloor \leq \lambda \\ a_{2}, & \lambda<\left(y_{1}-y_{2}\right)-\left\lfloor y_{1}-y_{2}\right\rfloor \leq 1\end{cases}
$$

for $a_{1,2} \in \mathbb{R}$ and $0<\lambda<1$. Compute the effective tensor a^{*}.

Problem 3 (Inverse inequality)
Show that for $\varphi_{h} \in V_{h}$ and \mathcal{T}_{h} with constant grid size

$$
\left|\varphi_{h}\right|_{m, p, D} \leq C h^{\tau-m}\left\|\varphi_{h}\right\|_{\tau, p, D}
$$

for all integers $0 \leq \tau<m$.

