Tutorial Numerical Algorithms

Winter term 2012/2013

Prof. Dr. M. Rumpf - B. Geihe, B. Heeren, S. Tölkes

Problem sheet 5

Problem 1 (Three-scale material)

Consider a material consisting of a nested periodic micro structure that can be described by a vertical bar pattern on a scale $\epsilon>0$, where each of these vertical again consists of a micro structure, which can be described by a horizontal bar pattern on a scale $\delta<\epsilon \epsilon$. Let $0<\lambda<\epsilon$ and let the tensors a^{*} and b^{*} represent material properties on the cell ϵQ for $0 \leq x_{1}-\left\lfloor\frac{x_{1}}{\epsilon}\right\rfloor \leq \lambda$ and $\lambda<x_{1}-\left\lfloor\frac{x_{1}}{\epsilon}\right\rfloor \leq \epsilon$, respecively.
The properties of a^{*} and b^{*} are again determined by microstructures, i.e. there are micro cells $\delta Q^{\{a, b\}}$ on ϵQ with bilinear forms $a(.,$.$) and b(.,$.$) subject to$

$$
\begin{aligned}
& a\left(y_{1}, y_{2}\right)=a\left(y_{2}\right)= \begin{cases}a_{1}, & 0 \leq y_{2}-\left\lfloor\frac{y_{2}}{\delta}\right\rfloor \leq \mu \\
a_{2}, & \mu<y_{2}-\left\lfloor\frac{y_{2}}{\delta}\right\rfloor \leq \delta\end{cases} \\
& b\left(y_{1}, y_{2}\right)=b\left(y_{2}\right)= \begin{cases}b_{1}, & 0 \leq y_{2}-\left\lfloor\frac{y_{2}}{\delta}\right\rfloor \leq \gamma \\
b_{2}, & \gamma<y_{2}-\left\lfloor\frac{y_{2}}{\delta}\right\rfloor \leq \delta^{\prime}\end{cases}
\end{aligned}
$$

where $0<\mu, \gamma<\delta$.

Determine the effective tensors a^{*} and b^{*} and derive a formula for the overall effective tensor c^{*} corresponding to the bilinear form $c(.,$.$) subject to$

$$
c\left(x_{1}, x_{2}\right)=c\left(x_{1}\right)=\left\{\begin{array}{ll}
a^{*}\left(y_{1}, y_{2}\right), & 0 \leq x_{1}-\left\lfloor\frac{x_{1}}{\epsilon}\right\rfloor \leq \lambda \\
b^{*}\left(y_{1}, y_{2}\right), & \lambda<x_{1}-\left\lfloor\frac{x_{1}}{\epsilon}\right\rfloor \leq \epsilon
\end{array} .\right.
$$

Problem 2 (Overall computational costs)
Consider the error estimate

$$
\left\|u^{H, h}-u^{*}\right\|_{1,2, D} \leq C\left(\operatorname{err}_{H M M}+\left(\frac{h}{\epsilon}\right)^{2 l}+H^{k}\right)
$$

where $\operatorname{err}_{H M M} \leq c \epsilon$. Derive the overall computational costs when solving the reconstruction and the H-problem using a CG-minimization.

Problem 3 (Corrector problem for vector fields)
Consider a family of vector fields $u^{\epsilon}: D \rightarrow \mathbb{R}^{d}, D \subset \mathbb{R}^{d}$, and the optimization problem

$$
\min _{u^{\varepsilon}} \int_{D} W_{\epsilon}\left(D u^{\epsilon}\right)-f \cdot u_{\epsilon} \mathrm{d} x, \quad W_{\epsilon}(A)=\frac{1}{2} a\left(x, \frac{x}{\epsilon}\right) A: A,
$$

where $a(.,$.$) is a scalar tensor and A: B=\operatorname{tr}\left(A^{T} B\right)=\sum_{i j} A_{i j} B_{i j}$. Under appropiate assumptions $u^{\varepsilon} \rightharpoonup u^{*}$ in $H^{1,2}\left(D, \mathbb{R}^{d}\right)$, where u^{*} solves

$$
u^{*}=\underset{u}{\arg \min } \int_{D} W^{*}(D u)-f \cdot u \mathrm{~d} x, \quad W^{*}(A)=\frac{1}{2} a^{*} A: A .
$$

Along the lines of Theorem 2.1, show that there are functions $\chi^{k l}:(x, y) \mapsto \chi^{k l}(x, y)$ that solve the corrector problem

$$
\operatorname{div}_{y}\left(a\left(E^{k l}+\nabla_{y} \chi^{k l}\right)\right)=0,
$$

where $E^{k l} \in \mathbb{R}^{d, d}$ with $E_{i j}^{k l}=\delta_{i k} \delta_{j l}$ and derive a formula for the effective tensor a^{*}.

