Tutorial Numerical Algorithms

Winter term 2012/2013

Prof. Dr. M. Rumpf - B. Geihe, B. Heeren, S. Tölkes

Problem sheet 8

Januar 8th, 2013

Problem 1 (1D constrained optimization)
In this exercise the temperature profile u along a one dimensional cut through a wall is considered.

The wall is made up of concrete with a high thermal conductivity $a_{c}>0$ and low material costs c_{c} on one side and an insulating material with a low thermal conductivity $0<a_{i}<a_{c}$ but high $\operatorname{costs} c_{i}>c_{c}$ on the other side. Given inner and outer temperatures u_{i} and u_{o} the heat loss shall be minimized while keeping the overall material costs low. Therefore consider the following minimization problem under the constraint that u solves the 1 D heat equation with a jumping diffusivity coefficient.

$$
\mathbf{J}[y, u]=\left(c_{c} y+c_{i}(1-y)\right)-\left(a_{i} u^{\prime}(1)\right)
$$

Compute the optimal y.

Hint: Determine the unique profile u first.

Problem 2 (Constrained optimization)
Consider the constrained optimization problem:

$$
\begin{aligned}
& \mathbf{J}[v, u]=v u^{2}+v^{2} \longrightarrow \min \\
& \text { s. t. } \quad u=\underset{u}{\arg \min } e(v, u)=\underset{u}{\arg \min }(u-v)^{2}+u^{4}
\end{aligned}
$$

Write down the Lagrangian \mathbf{L} and derive the Newton method to solve $\nabla \mathbf{L}=0$.

Problem 3 (Variation of the area functional)
Given a surface M and a (global) parametrization x, i.e. $M=\{x=x(\xi): \xi \in \omega\}$. Consider a variation in normal direction $\phi(t, x)=x+t \vartheta(x) n(x)$. Prove by explicit computation:

$$
\left(\int_{M} \mathrm{~d} a\right)_{, M}(\vartheta):=\left.\frac{d}{d t} \int_{\phi(t, M)} \mathrm{d} a\right|_{t=0}=\int_{M} \kappa \vartheta \mathrm{~d} a,
$$

where $\kappa=\operatorname{tr} S$ is the mean curvature, $S=g^{-1} h$ the shape operator, $h=D x^{T} D n$.

Hint: Make use of the linearization $\operatorname{det}(\mathbb{1}+\epsilon A)=1+\epsilon \operatorname{tr} A+O\left(\epsilon^{2}\right)$.

Problem 4 (Coarea formula)
For a bounded domain $\Omega \subset \mathbb{R}^{d}$ with polygonal boundary, $\psi: \Omega \rightarrow[a, b] \in C^{1}(\Omega)$, $\nabla \psi \neq 0$ and $g \in H_{\text {loc }}^{1,1}\left(\mathbb{R}^{d}\right)$ prove the coarea formula:

$$
\int_{a}^{b}\left(\int_{[\psi=c]} g\right) \mathrm{d} c=\int_{[a \leq \psi \leq b]} g|\nabla \psi| .
$$

(i) Prove the formula for a regular triangulation \mathcal{T}_{h} of Ω, ψ_{h} piecewise linear on $T \in \mathcal{T}_{h}$ and globally continuous and g_{h} piecewise constant.
(ii) Consider a sequence \mathcal{T}_{h} with $h \rightarrow 0, \psi_{h}$ being the piecewise linear nodal interpolation of ψ and g_{h} being piecewise constant with $g_{h}=f_{T} g$ for each $T \in \mathcal{T}_{h}$.

