

Tutorial Numerical Algorithms Winter term 2012/2013 Prof. Dr. M. Rumpf – B. Geihe, B. Heeren, S. Tölkes

Problem sheet 8

Januar 8th, 2013

Problem 1 (1D constrained optimization)

In this exercise the temperature profile u along a one dimensional cut through a wall is considered.

The wall is made up of concrete with a high thermal conductivity $a_c > 0$ and low material costs c_c on one side and an insulating material with a low thermal conductivity $0 < a_i < a_c$ but high costs $c_i > c_c$ on the other side. Given inner and outer temperatures u_i and u_o the heat loss shall be minimized while keeping the overall material costs low. Therefore consider the following minimization problem under the constraint that u solves the 1D heat equation with a jumping diffusivity coefficient.

$$\mathbf{J}[y,u] = (c_c y + c_i(1-y)) - (a_i u'(1))$$

Compute the optimal *y*.

Hint: Determine the unique profile *u* first.

Problem 2 (Constrained optimization) Consider the constrained optimization problem:

$$J[v, u] = vu^{2} + v^{2} \longrightarrow \min$$

s. t. $u = \operatorname*{arg\,min}_{u} e(v, u) = \operatorname*{arg\,min}_{u} (u - v)^{2} + u^{4}$

Write down the Lagrangian **L** and derive the Newton method to solve $\nabla \mathbf{L} = 0$.

Problem 3 (Variation of the area functional)

Given a surface *M* and a (global) parametrization *x*, i.e. $M = \{x = x(\xi) : \xi \in \omega\}$. Consider a variation in normal direction $\phi(t, x) = x + t \vartheta(x)n(x)$. Prove by explicit computation:

$$\left(\int_{M} \mathrm{d}a\right)_{,M}(\vartheta) := \frac{d}{dt} \int_{\phi(t,M)} \mathrm{d}a \bigg|_{t=0} = \int_{M} \kappa \,\vartheta \, \mathrm{d}a,$$

where $\kappa = \operatorname{tr} S$ is the mean curvature, $S = g^{-1}h$ the shape operator, $h = Dx^T Dn$.

Hint: Make use of the linearization $det(1 + \epsilon A) = 1 + \epsilon \operatorname{tr} A + O(\epsilon^2)$.

Problem 4 (Coarea formula)

For a bounded domain $\Omega \subset \mathbb{R}^d$ with polygonal boundary, $\psi : \Omega \to [a, b] \in C^1(\Omega)$, $\nabla \psi \neq 0$ and $g \in H^{1,1}_{loc}(\mathbb{R}^d)$ prove the coarea formula:

$$\int_{a}^{b} \Big(\int_{[\psi=c]} g \Big) \mathrm{d}c = \int_{[a \le \psi \le b]} g \left| \nabla \psi \right|.$$

- (i) Prove the formula for a regular triangulation \mathcal{T}_h of Ω , ψ_h piecewise linear on $T \in \mathcal{T}_h$ and globally continuous and g_h piecewise constant.
- (ii) Consider a sequence \mathcal{T}_h with $h \to 0$, ψ_h being the piecewise linear nodal interpolation of ψ and g_h being piecewise constant with $g_h = \oint_T g$ for each $T \in \mathcal{T}_h$.