

Numerical Algorithms

Winter semester 2013/2014 Prof. Dr. Carsten Burstedde Philipp Morgenstern

Due date: Thursday, 31 October.

Exercise Sheet 1.

Exercise 1. (PDE under transformation)

Consider the equation Lu = f with a second order linear partial differential operator L in some open and connected domain $\Omega \subset \mathbb{R}^d$, and a transformation $\Phi : \Omega \to \Omega' \subset \mathbb{R}^d$ with continuous, differentiable and non-singular derivative $D\Phi := \frac{\partial \Phi}{\partial x}$.

Prove that the equation does not change its type when formulated in terms of transformed coordinates $\xi = \Phi(x)$.

(4 points)

Exercise 2. (weak derivatives)

- a) If u has a weak derivative $D^{\alpha}u$ in Ω , then u is also weakly differentiable in every connected subset $\Omega_0 \subset \Omega$, having the same derivative.
- b) If $D^{\alpha}u$ has a weak derivative $D^{\beta}(D^{\alpha}u)$, then $D^{\alpha+\beta}u$ exists with $D^{\beta}(D^{\alpha}u) = D^{\alpha+\beta}u = D^{\alpha}(D^{\beta}u)$. (2 points)