Numerical Algorithms

Winter semester 2013/2014
Prof. Dr. Carsten Burstedde Philipp Morgenstern

Exercise Sheet 2.

Due date: Thursday, 7 November.

Exercise 3. (Poincaré-Friedrichs Inequality)
Prove the Poincaré-Friedrichs Inequality for $v \in H^{1}(\Omega)$ with $\Omega=(0,1)^{2}$ the unit square and $v=0$ on $\tilde{\Gamma}=\left[0, \frac{1}{2}\right] \times\{0\} \subsetneq \partial \Omega$.

Exercise 4. (discrete trace operator)
Find $g \in P_{1}([0,1])$ such that for all $f \in P_{1}([0,1])$ holds

$$
\int_{0}^{1} f g \mathrm{~d} x=f(0)
$$

