

Numerical Algorithms

Winter semester 2013/2014 Prof. Dr. Carsten Burstedde Philipp Morgenstern

Exercise Sheet 2.

Due date: Thursday, 7 November.

Exercise 3. (Poincaré-Friedrichs Inequality)

Prove the Poincaré-Friedrichs Inequality for $v \in H^1(\Omega)$ with $\Omega = (0, 1)^2$ the unit square and v = 0 on $\tilde{\Gamma} = [0, \frac{1}{2}] \times \{0\} \subsetneq \partial \Omega$.

(5 points)

Exercise 4. (discrete trace operator)

Find $g \in P_1([0, 1])$ such that for all $f \in P_1([0, 1])$ holds

$$\int_0^1 fg \,\mathrm{d}x = f(0)$$

(2 points)