## Numerical Algorithms

Winter semester 2013/2014
Prof. Dr. Carsten Burstedde Philipp Morgenstern

## Exercise Sheet 3.

Due date: Tuesday, 12 November.

Exercise 5. (function folding)
Show that the folding of $L^{2}$-functions
a) is distributive and
b) satisfies

$$
\chi f * g=f * \chi g=\chi(f * g)
$$

for any scaled characteristic function $\chi(x)=\left\{\begin{array}{ll}a & x \in A \subseteq \mathbb{R} \\ 0 & \text { else }\end{array}\right.$.
If this is not true, give a counterexample.

Exercise 6. (Riesz representation)
Given $n \in \mathbb{N} \ni k \leq n$, find the coefficients $\left(g_{0}, \ldots, g_{n}\right) \in \mathbb{R}^{n+1}$ of $g \in P_{n}([0,1])$ such that

$$
\int_{0}^{1} f g \mathrm{~d} x=\int_{0}^{1} \frac{\partial^{k}}{\partial x^{k}} f \mathrm{~d} x \quad \text { for all } f \in P_{n}([0,1])
$$

Hint: It suffices to denote the inverse of the $(n+1)$-dimensional Hilbert matrix by $H_{n+1}^{-1}$.

