

Numerical Algorithms

Winter semester 2013/2014 Prof. Dr. Carsten Burstedde Philipp Morgenstern

Exercise Sheet 3.

Due date: Tuesday, 12 November.

Exercise 5. (function folding) Show that the folding of L^2 -functions

- a) is distributive and
- b) satisfies

$$\chi f * g = f * \chi g = \chi (f * g)$$

for any scaled characteristic function $\chi(x) = \begin{cases} a & x \in A \subseteq \mathbb{R} \\ 0 & else \end{cases}$. If this is not true, give a counterexample.

(3 points)

Exercise 6. (Riesz representation)

Given $n \in \mathbb{N} \ni k \leq n$, find the coefficients $(g_0, \ldots, g_n) \in \mathbb{R}^{n+1}$ of $g \in P_n([0, 1])$ such that

$$\int_0^1 fg \, \mathrm{d}x = \int_0^1 \frac{\partial^k}{\partial x^k} f \, \mathrm{d}x \quad \text{for all } f \in P_n([0,1]) \, .$$

Hint: It suffices to denote the inverse of the (n + 1)-dimensional Hilbert matrix by H_{n+1}^{-1} . (4 points)