Numerical Algorithms

Winter semester 2013/2014
Prof. Dr. Carsten Burstedde
Philipp Morgenstern

Exercise Sheet 5.

Due date: Thursday, 28 November.

Exercise 10. (famous inequalities)
Prove the following estimates. Hint: Use the convexity of $x \mapsto e^{x}$ for a$)$, a) for b), and b) for c).
a) Young inequality: Let $1<p, q<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. Then, for all $a, b \geq 0$,

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} .
$$

b) Hölder inequality: All functions $f \in L^{p}\left(\mathbb{R}^{d}\right)$ and $g \in L^{q}\left(\mathbb{R}^{d}\right)$ with $1<p, q<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$ satisfy

$$
f g \in L^{1}\left(\mathbb{R}^{d}\right) \text { and }\|f g\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leq\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}\|g\|_{L^{q}\left(\mathbb{R}^{d}\right)} .
$$

c) Minkowsky inequality: For any $p \in[1, \infty]$, the L^{p}-norm satisfies the triangle inequality

$$
\|f+g\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leq\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}+\|g\|_{L^{p}\left(\mathbb{R}^{d}\right)} \quad \text { for all } f, g \in L^{p}\left(\mathbb{R}^{d}\right) .
$$

Exercise 11. (time derivative)
Consider some totally boring Pong (constant speed, no friction, point-shaped ball) with solid boundaries everywhere and the ball's path depicted below. The start position is $\left(0, \frac{2}{3}\right)$ and the next boundary contact is at $\left(1, \frac{1}{6}\right)$. After 2 time units, the ball reaches the initial position again.

Show that the ball's location has a weak derivative with respect to time. Provided that the time and space units are seconds and meters respectively, compute the ball's speed.

