

Numerical Algorithms

Winter semester 2013/2014 Prof. Dr. Carsten Burstedde Philipp Morgenstern

Exercise Sheet 5.

Due date: Thursday, 28 November.

Exercise 10. (famous inequalities)

Prove the following estimates. Hint: Use the convexity of $x \mapsto e^x$ for a), a) for b), and b) for c).

a) Young inequality: Let $1 < p, q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then, for all $a, b \ge 0$,

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

b) Hölder inequality: All functions $f \in L^p(\mathbb{R}^d)$ and $g \in L^q(\mathbb{R}^d)$ with $1 < p, q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$ satisfy

$$fg \in L^1(\mathbb{R}^d)$$
 and $||fg||_{L^1(\mathbb{R}^d)} \le ||f||_{L^p(\mathbb{R}^d)} ||g||_{L^q(\mathbb{R}^d)}$.

c) Minkowsky inequality: For any $p \in [1, \infty]$, the L^p -norm satisfies the triangle inequality

$$||f + g||_{L^{p}(\mathbb{R}^{d})} \le ||f||_{L^{p}(\mathbb{R}^{d})} + ||g||_{L^{p}(\mathbb{R}^{d})} \text{ for all } f, g \in L^{p}(\mathbb{R}^{d}).$$

(7 points)

Exercise 11. (time derivative)

Consider some totally boring Pong (constant speed, no friction, point-shaped ball) with solid boundaries everywhere and the ball's path depicted below. The start position is $(0, \frac{2}{3})$ and the next boundary contact is at $(1, \frac{1}{6})$. After 2 time units, the ball reaches the initial position again.

Show that the ball's location has a weak derivative with respect to time. Provided that the time and space units are seconds and meters respectively, compute the ball's speed.

(3 points)