Numerical Algorithms

Winter semester 2013/2014
Prof. Dr. Carsten Burstedde Philipp Morgenstern

Exercise Sheet 8.

Programming Exercise 3. (FE solver for parabolic PDE)
Use your existing program that solves an elliptic PDE as a starting point to solve the heat equation for $t \in[0, T]$,

$$
\begin{align*}
u_{t}-\Delta u & =0 & & \text { in the unit square, } \tag{1a}\\
u & =g(x, t) & & \text { on its boundary, } \tag{1b}\\
u & =g(x, 0) & & \text { at time zero. } \tag{1c}
\end{align*}
$$

Use the fundamental solution $\Phi(x, t)$ to define the exact solution, initial and boundary conditions,

$$
\begin{equation*}
g(x, t)=\Phi\left(x-x_{0}, t+t_{0}\right) \tag{2}
\end{equation*}
$$

Place x_{0} inside the unit square and pick t_{0} and T such that the half width $\sigma=\frac{1}{5}$ for $g(x, 0)$, and that $g(x, T) \leq 2$.
Implement the θ one-step method. Plot the L^{2}-error over time for different mesh spacings h, and plot the final-time error at $t=T$ over h.
Try this both for $\theta=0$, where you make the time step bigger as long as the method is stable.
Then switch to $\theta=\frac{1}{2}$ and experiment with even larger time step sizes.
(10 points)
Submit your solutions via email to morgenstern@ins.uni-bonn.de . Deadline is the tutorial on Thursday, 23 January.

