

Numerical Algorithms

Winter semester 2013/2014 Prof. Dr. Carsten Burstedde Philipp Morgenstern

Exercise Sheet 8.

Due date: Thursday, 23 January.

Programming Exercise 3. (FE solver for parabolic PDE)

Use your existing program that solves an elliptic PDE as a starting point to solve the heat equation for $t \in [0, T]$,

$u_t - \Delta u = 0$ in the unit square, (1:	a)
--	----	---	---

$$u = g(x, t)$$
 on its boundary, (1b)

$$u = g(x, 0)$$
 at time zero. (1c)

Use the fundamental solution $\Phi(x, t)$ to define the exact solution, initial and boundary conditions,

$$g(x,t) = \Phi(x - x_0, t + t_0).$$
(2)

Place x_0 inside the unit square and pick t_0 and T such that the half width $\sigma = \frac{1}{5}$ for g(x, 0), and that $g(x, T) \le 2$.

Implement the θ one-step method. Plot the L^2 -error over time for different mesh spacings h, and plot the final-time error at t = T over h.

Try this both for $\theta = 0$, where you make the time step bigger as long as the method is stable. Then switch to $\theta = \frac{1}{2}$ and experiment with even larger time step sizes.

(10 points)

Submit your solutions via email to morgenstern@ins.uni-bonn.de . Deadline is the tutorial on Thursday, 23 January.