Scientific Computing I

Winter Semester 2013 / 2014
Prof. Dr. Beuchler
Bastian Bohn and Alexander Hullmann

Exercise sheet 11.

Theoretical exercise 1. (Condition number of the biharmonic equation [5 points])
Consider the biharmonic equation: Find u such that

$$
\begin{aligned}
\triangle(\triangle u) & =f & & \forall x \in \Omega \\
u & =0 & & \forall x \in \partial \Omega \\
\frac{\partial u}{\partial n} & =0 & & \forall x \in \partial \Omega
\end{aligned}
$$

It can be written in weak form: Find $u \in H_{0}^{2}(\Omega)=\left\{u \in H^{2}(\Omega):\left.u\right|_{\partial \Omega}=0,\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0\right\}$ such that

$$
a(u, v)=F(v) \quad \forall v \in H_{0}^{2}(\Omega)
$$

Now assume a square domain $\Omega=(0,1)^{2}$ and a uniform triangulation with diameter h and local C^{1}-elements $\left(\phi_{i}\right)_{i=1}^{N}$. Show that the condition number of the operator matrix $K \in \mathbb{R}^{N \times N}$ with

$$
(K)_{i j}=a\left(\phi_{i}, \phi_{j}\right)
$$

grows by $\Theta\left(h^{-4}\right)$.
Theoretical exercise 2. (Inverse estimate I [5 points])
We have triangle-based quasiuniform triangulations $\left\{\mathcal{T}_{h}\right\}_{h}$ of a polygonal twodimensional domain, and we denote the space of linear finite elements by V_{h}. As usual for quasiuniform triangulations, we have the condition

$$
\rho_{T} \geq \kappa^{-1} h_{T} \quad \forall T \in \mathcal{T}_{h}, h>0
$$

where ρ_{T} denotes the radius of the incircle of T and h_{T} half of the diameter of T. Show that

$$
\left\|v_{h}\right\|_{\infty} \leq \frac{C}{h}\left\|v_{h}\right\|_{0} \quad \forall v_{h} \in V_{h}
$$

holds with an h-independent constant C.
Theoretical exercise 3. (Inverse estimate II [5 points])
Consider the setup as in Exercise 2. Show that for the discrete solution u_{h} of the Poisson prolem with homogeneous boundary conditions, the following estimate holds

$$
\left\|u-u_{h}\right\|_{\infty} \leq C h\|u\|_{2}
$$

Hint: In your proof you need to employ Inverse estimate I.

