

Scientific Computing I

Winter Semester 2013 / 2014 Prof. Dr. Beuchler Bastian Bohn and Alexander Hullmann

Exercise sheet 13.

Closing date **28.1.2014**.

Theoretical exercise 1. (Estimate for the θ -scheme [5 points]) Assume $g \in C^1([0, T], \mathbb{R})$ and show that

$$\left| \int_{0}^{1} g(t) - \left[(1 - \theta)g(0) + \theta g(1) \right] \right| \le \max(\theta, 1 - \theta) \int_{0}^{1} \left| g'(t) \right| \mathrm{d}t.$$

Theoretical exercise 2. (Parabolic initial value problem [5 bonus points]) Consider the equation

$$\frac{\mathrm{d}}{\mathrm{d}t}(u(t),v)_H + a(u(t),v) = \langle f(t),v \rangle \quad \forall v \in V$$

for almost all $t \in (0,T)$ and the initial condition $u(0) = u_0$. Let us assume that $f \in C([0,T], V)$ and $u \in C^1([0,T], V)$, and note that

$$(u'(t), u(t))_H = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} (u(t), u(t))_H \quad \forall t \in (0, T) \; .$$

Show that

$$\|u(t)\|_{H} \le e^{-\kappa t} \|u_{0}\|_{H} + \int_{0}^{t} e^{-\kappa(t-s)} \|f(s)\|_{H} \mathrm{d}s \quad \forall t \in (0,T)$$

with $\kappa = \alpha/c^2$, where $\alpha > 0$ is the coercivity constant of $a(\cdot, \cdot)$ and c satisfies $||v||_H \le c||v||_V$ for all $v \in V$.

Theoretical exercise 3. (Error estimate [5 bonus points])

Show that

$$\|\tilde{u}_j - u_j\| \le e^{t_j L} \left[\|\psi_0(\tilde{u}_\tau)\| + \tau_0 \|\psi_1(\tilde{u}_\tau)\| + \dots + \tau_{j-1} \|\psi_j(\tilde{u}_\tau)\| \right]$$

for all $\tilde{u}_{\tau} \in X_{\tau}$ and $j = 0, 1, \ldots, m$. Particularly, for j = m it holds that

$$\|\tilde{u}_{\tau} - u_{\tau}\|_{X_{\tau}} \le e^{TL} \|\psi_{\tau}(\tilde{u}_{\tau})\|_{Y_{\tau}}$$

for all $\tilde{u}_{\tau} \in X_{\tau}$. Check the Script "Introduction to Computational Mathematics" or the book "Numerische Mathematik" by W. Zulehner for the used notation.