Scientific Computing I

Winter Semester 2013 / 2014
Prof. Dr. Beuchler
Bastian Bohn and Alexander Hullmann

Exercise sheet 13.

Theoretical exercise 1. (Estimate for the θ-scheme [5 points])
Assume $g \in C^{1}([0, T], \mathbb{R})$ and show that

$$
\left|\int_{0}^{1} g(t)-[(1-\theta) g(0)+\theta g(1)]\right| \leq \max (\theta, 1-\theta) \int_{0}^{1}\left|g^{\prime}(t)\right| \mathrm{d} t
$$

Theoretical exercise 2. (Parabolic initial value problem [5 bonus points])
Consider the equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(u(t), v)_{H}+a(u(t), v)=\langle f(t), v\rangle \quad \forall v \in V
$$

for almost all $t \in(0, T)$ and the initial condition $u(0)=u_{0}$. Let us assume that $f \in$ $C([0, T], V)$ and $u \in C^{1}([0, T], V)$, and note that

$$
\left(u^{\prime}(t), u(t)\right)_{H}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}(u(t), u(t))_{H} \quad \forall t \in(0, T)
$$

Show that

$$
\|u(t)\|_{H} \leq e^{-\kappa t}\left\|u_{0}\right\|_{H}+\int_{0}^{t} e^{-\kappa(t-s)}\|f(s)\|_{H} \mathrm{~d} s \quad \forall t \in(0, T)
$$

with $\kappa=\alpha / c^{2}$, where $\alpha>0$ is the coercivity constant of $a(\cdot, \cdot)$ and c satisfies $\|v\|_{H} \leq$ $c\|v\|_{V}$ for all $v \in V$.

Theoretical exercise 3. (Error estimate [5 bonus points])
Show that

$$
\left\|\tilde{u}_{j}-u_{j}\right\| \leq e^{t_{j} L}\left[\left\|\psi_{0}\left(\tilde{u}_{\tau}\right)\right\|+\tau_{0}\left\|\psi_{1}\left(\tilde{u}_{\tau}\right)\right\|+\cdots+\tau_{j-1}\left\|\psi_{j}\left(\tilde{u}_{\tau}\right)\right\|\right]
$$

for all $\tilde{u}_{\tau} \in X_{\tau}$ and $j=0,1, \ldots, m$. Particularly, for $j=m$ it holds that

$$
\left\|\tilde{u}_{\tau}-u_{\tau}\right\|_{X_{\tau}} \leq e^{T L}\left\|\psi_{\tau}\left(\tilde{u}_{\tau}\right)\right\|_{Y_{\tau}}
$$

for all $\tilde{u}_{\tau} \in X_{\tau}$. Check the Script "Introduction to Computational Mathematics" or the book "Numerische Mathematik" by W. Zulehner for the used notation.

