
Scientific Computing I

Winter Semester 2013 / 2014
Prof. Dr. Beuchler

Bastian Bohn and Alexander Hullmann

Excercise sheet 3. Closing date 5.11.2013.

Theoretical exercise 1. (Finite differences [5 points])

The second derivative u′′ of a one-dimensional real-valued C4-function u(x) is to be
discretized on a grid with mesh-width h and a finite difference stencil of the form[

α β γ
]
.

Prove that the maximal consistency order of this finite-difference stencil is 2 and deter-
mine the corresponding α, β and γ.

Theoretical exercise 2. (Mixed second derivatives [5 points])

uSW uS uSE

uW uC uE

uNW uN uNE

Figure 1: Positions of finite difference points

From the lecture, we already know the second derivatives uxx(C) ≈ 1
h2

(uE + uW − 2uC)
and uyy(C) ≈ 1

h2
(uS + uN − 2uC). The approximation of mixed second derivatives uxy

is more difficult.

a) Show that a consistent formula is of the form

1

4h2

−1− α− β + γ 2(α− γ) 1− α+ β + γ
2(α+ β) −4α 2(α− β)

1− α− β − γ 2(α+ γ) −1− α+ β − γ

 =̂

uNW uN uNE
uW uC uE
uSW uS uSE

with α, β, γ ∈ R.

b) Prove that uNW , uSW , uNE , uSE and uW , uS , uE , uN cannot have the same sign.

Theoretical exercise 3. (M-Matrices [5 points])

Let A ∈ Rn×n be an L0-Matrix. Show that

a) A is inverse monotone iff there exists a vector e > 0 with Ae > 0.

b) Then, it holds that

‖A−1‖ ≤ ‖e‖
mink(Ae)k

.

Programming exercise 1. (Numerical quadrature on the reference triangle [10 points])

On last week’s exercise sheet you calculated some exact integrals involving linear and
quadratic Lagrange polynomials φα and their derivatives on the reference triangle T̂ .
This week the same integrals will be solved by numerical quadrature routines. A quadra-
ture rule of size N is given by certain weights ωi and nodes zi for i = 0, . . . , N − 1. The
integral of a function f : T̂ → R is then approximated by∫

T̂
f(x)dx ≈

N−1∑
i=0

ωi · f(zi).

Today the following rules for N = 1, 3, 7 (which can be proven to be exact for polynomials
of degree up to 1, 2, 5) will be implemented:

• Center rule:

x1

x2

z0 =
(
1
3 ,

1
3

)T
ω0 = 1

2

• Edge midpoint rule:

x1

x2

z0 =
(
1
2 , 0
)T
, z1 =

(
1
2 ,

1
2

)T
, z2 =

(
0, 12
)T

ω0 = ω1 = ω2 = 1
6

• 7 point rule:

x1

x2

z0 =
(
6−
√
15

21 , 6−
√
15

21

)T
, z1 =

(
9+2
√
15

21 , 6−
√
15

21

)T
,

z2 =
(
6−
√
15

21 , 9+2
√
15

21

)T
, z3 =

(
6+
√
15

21 , 9−2
√
15

21

)T
,

z4 =
(
6+
√
15

21 , 6+
√
15

21

)T
, z5 =

(
9−2
√
15

21 , 6+
√
15

21

)T
,

z6 =
(
1
3 ,

1
3

)T
ω0 = ω1 = ω2 = 155−

√
15

2400 ,

ω3 = ω4 = ω5 = 155+
√
15

2400 ,
ω6 = 9

80

Tasks:

a) [4 points] Create an enum RuleName which stands for the integration rules (i.e.
CENTER RULE, EDGE MIDPOINTS RULE or SEVEN POINT RULE). Implement the following
functions (create a namespace IntegrationRule if you are programming in C++,
see e.g. http://www.cplusplus.com/doc/tutorial/namespaces/).

• int determineSizeOfRule(RuleName rule) – returns N for the given rule.

• void getQuadratureWeightsAndNodes(RuleName rule, double* weights,

double** nodes, int size) – returns the weights and nodes for the given
rule. size is the size of the array weights and half of the size of the array
nodes. It should be equal to N for the corresponding rule.

2

http://www.cplusplus.com/doc/tutorial/namespaces/

b) [6 points] Enhance the class Basis from last week. To this end, add the following
information to the header-file.

• bool doNumericalQuadrature – this variable determines if integrals should be
computed by hand or by numerical quadrature.

• IntegrationRule::RuleName quadratureRule – this is the rule which is used
for numerical quadrature.

Implement the following member functions for the Basis class:

• void enableQuadrature(IntegrationRule::RuleName rule) – enables nu-
merical quadrature instead of direct integral computation for the given rule.

• void disableQuadrature() – disables numerical quadrature.

Enhance the existing member functions from last weeks code. To this end, check
the doNumericalQuadrature variable. If it is not set, execute the direct computa-
tion from last week. If it is set, calculate the corresponding integrals by numerical
quadrature instead. The following member functions have to be enhanced:

• double calcMassMatrixEntry(int i, int j, double factor) – computes

factor ·
∫
T̂
φi(x)φj(x)dx.

• double calcLoadVectorEntry(int i, double factor) – computes

factor ·
∫
T̂
φi(x)dx.

• double calcStiffnessMatrixEntry(int i, int j, double** A, double

d11, double d22, double factor) – computes

factor ·
∫
T̂

(A · ∇φi(x))T ·
(

d11 0
0 d22

)
·
(
A · ∇φj(x)

)
dx.

Test your implementation:

• For each of the three quadrature rules from above calculate the 6 × 6 mass
matrix, the 6-dimensional load vector and the 6 × 6 stiffness matrix for the
quadratic Lagrangian basis. The parameters are the same as last week, i.e.

factor = 1, A =

(
1 2
3 4

)
and d11 = 2, d22 = 1.

Feel free to use your own code from last week’s exercise or the incomplete
code from the website.

3

