

Scientific Computing I

Winter Semester 2013 / 2014 Prof. Dr. Beuchler Bastian Bohn and Alexander Hullmann

Exercise sheet 9.

Closing date 17.12.2013.

Theoretical exercise 1. (Isoparametric finite elements [5 points])

Let $\hat{K} := \{(\hat{x}_1, \hat{x}_2) \in \mathbb{R}^2 : 0 \leq \hat{x}_1, \hat{x}_2 \leq 1\}$ be the reference element with vertices $\{(0,0), (1,0), (0,1), (1,1)\}$ and nodal basis functions from the bilinear polynomial space $\hat{P} := \text{span}\{1, \hat{x}_1, \hat{x}_2, \hat{x}_1 \hat{x}_2\}$. Under what conditions on the isoparametric element τ_s is the mapping $\Phi_s : \hat{K} \to \tau_s$

- a) affine-linear?
- b) bijective?

Theoretical exercise 2. (Nodal basis functions [5 points])

Determine all nodal basis functions on the following reference elements:

a) Serendepity class

$$\hat{K} := \{(\hat{x}_1, \hat{x}_2) \in \mathbb{R}^2 : 0 \le \hat{x}_1, \hat{x}_2 \le 1\}$$
 with vertices

$$\{(0,0),(\tfrac{1}{2},0),(1,0),(1,\tfrac{1}{2}),(1,1),(\tfrac{1}{2},1),(0,1),(0,\tfrac{1}{2})\}$$

and the polynomial space $\hat{P} := \text{span}\{1, \hat{x}_1, \hat{x}_2, \hat{x}_1\hat{x}_2, \hat{x}_1^2, \hat{x}_2^2, \hat{x}_1^2\hat{x}_2, \hat{x}_1\hat{x}_2^2\}.$

b) Tetrahedron

$$\hat{K} := \{(\hat{x}_1, \hat{x}_2, \hat{x}_3) \in \mathbb{R}^3 : \hat{x}_1, \hat{x}_2, \hat{x}_3 \ge 0, \sum_{i=1}^3 \hat{x}_i \le 1\}$$
 with vertices

$$\{(0,0,0),(1,0,0),(0,1,0),(0,0,1)\}$$

and the polynomial space $\hat{P} := \text{span}\{1, \hat{x}_1, \hat{x}_2, \hat{x}_3\}.$

c) Hexahedron

$$\hat{K} := \{(\hat{x}_1, \hat{x}_2, \hat{x}_3) \in \mathbb{R}^3 : 0 \le \hat{x}_1, \hat{x}_2, \hat{x}_3 \le 1\}$$
 with vertices

$$\{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}$$

and the polynomial space $\hat{P} := \text{span}\{1, \hat{x}_1, \hat{x}_2, \hat{x}_3, \hat{x}_1\hat{x}_2, \hat{x}_1\hat{x}_3, \hat{x}_2\hat{x}_3, \hat{x}_1\hat{x}_2\hat{x}_3\}$.

Theoretical exercise 3. (Higher order triangle elements [5 points])

Let $t \geq 0$. In a triangle T, there are $s = 1 + 2 + \cdots + (t+1)$ vertices z_1, \ldots, z_s aligned on lines according to Fig. 1. Prove that for every continuous function f on T, there exists exactly one polynomial p of degree t with

$$p(z_i) = f(z_i)$$
 for $i = 1, 2, ..., s$.

Figure 1: Vertices of the nodal basis for linear, quadratic and cubic triangle elements