Einführung in die Grundlagen der Numerik

Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn

Wintersemester 2014/2015

Schneller Löser für lineare Gleichungssysteme

DIREKTE LÖSER (TEUER)

Basieren auf multipliktiven Zerlegungen / Faktorisierungen

$$A = B \cdot C$$

KLASSISCHE ITERATIVE VERFAHREN (LANGSAME KONVERGENZ)

Basieren auf einem Fixpunktansatz

$$Ax = b \leftrightarrow F(x) = x + b - Ax \rightarrow Fixpunkt$$

OPTIMIERUNGSVERFAHREN

Ein weiterer Zugang/Umformulierung

$$Ax = b \leftrightarrow F(x) = F(x, b, A) \rightarrow \min$$

als Optimierungs- oder Minimierungsproblem.

MINIMIERUNGSAUFGABE

$$F(x) := \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle$$

• Wir nehmen an das $A \in \mathbb{R}^{n \times n}$ sym.pos.def. dann gilt

$$x_{\star} := \operatorname{argmin} F(x) \Leftrightarrow Ax_{\star} = b$$

- Optimierungsverfahren bestehen immer aus zwei elementaren Schritten:
 - Bestimmung der Suchrichtung, des Suchraums.
 - Bestimmung der Schrittlänge entlang der Suchrichtung.

GRADIENTENVERFAHREN

STEILSTER ABSTIEG

- Setze $x_0 := y$; $r_0 := b Ax_0$; m := 0.
- Solange $||r_m|| > \epsilon$
 - Setze $\lambda_m := \frac{\langle r_m, r_m \rangle}{\langle Ar_m, r_m \rangle}$
 - Setze $x_{m+1} := x_m + \lambda_m r_m$
 - Setze $r_{m+1} := r_m \lambda_m A r_m$
 - Setze m = m + 1
- Lokal optimale Suchrichtung der Gradient von F.
- Das ist ein nicht-lineares Verfahren, denn

$$x_{m+1} := x_m + \lambda_m r_m$$

enthält Produkt von Unbekannten.

- Iterationsupdate hat besondere Struktur (Krylovraum).
- Für die Residuen gilt (Projektionsverfahren)

$$\langle r_{m+1}, r_m \rangle = 0$$

KRYLOVRAUM

Folge der Iterierten

$$x_{m+1} \in x_0 + \operatorname{span}\langle r_0, \dots, r_m \rangle, \quad r_{m+1} \in \operatorname{span}\langle r_0, Ar_0, \dots, A^m r_0 \rangle$$

KRYLOVRAUM

Sei $A \in \mathbb{K}^{n \times n}$ und $v \in \mathbb{K}^n$ gegeben. Dann definiert

$$\mathcal{K}_m(A, v) := \operatorname{span}\langle v, Av, \dots, A^{m-1}v \rangle$$

einen Unterraum des \mathbb{K}^n und wird **Krylovraum** der Ordnung m zu (A, v) genannt.

Die Residuen des Gradientenverfahrens liegen alle in dem Krylovraum $\mathcal{K}_m(A, r_0)$. Die Iterierten im affinen Raum $x_0 + \mathcal{K}_m(A, r_0)$.

Eigenschaften von $\mathcal{K}_m(A, v)$

• Jedes Element $w \in \mathcal{K}_m(A, v)$ ist ein Polynom in A angewendet auf v.

$$\mathbf{w} = \alpha_0 \mathbf{v} + \alpha_1 \mathbf{A} \mathbf{v} + \alpha_2 \mathbf{A}^2 \mathbf{v} + \dots + \alpha_{m-1} \mathbf{A}^{m-1} \mathbf{v} = \pi(\mathbf{A}) \mathbf{v}$$

- Die Krylovräume sind geschachtelt $\mathcal{K}_m(A, v) \subset \mathcal{K}_{m+1}(A, v)$.
- Die Dimension wächst maximal um eins wenn die Ordnung um eins erhöht wird.

Grad von *v* bzgl. *A*

$$\operatorname{grad}_A(\mathbf{v}) := \min\{j : \dim(\mathcal{K}_{j+1}(A,\mathbf{v})) < j+1\}$$

Gradientverfahren als Projektionsmethode

GRADIENTENVERFAHREN ALS MINIMIERUNG

Es gilt nach Konstruktion von oben $\lambda_m := \frac{\langle r_m, r_m \rangle}{\langle Ar_m, r_m \rangle}$ und mit

$$r_{m+1} := b - Ax_{m+1}, \quad x_{m+1} := x_m + \lambda_m r_m.$$

dann auch $\langle r_{m+1}, r_m \rangle = 0$.

GRADIENTENVERFAHREN ALS PROJEKTIONSMETHODE

Wir können das aber auch umformulieren: Finde λ_m , so dass für

$$x_{m+1} := x_m + \lambda_m r_m, \quad r_{m+1} := b - A x_{m+1}$$

eben $\langle r_{m+1}, r_m \rangle = 0$ gilt.

Projektionsmethoden

Wieder zwei Schritte:

- Wähle einen Suchraum V (hier $V = \operatorname{span}\langle r_m \rangle$).
- Bestimme $x_{m+1} \in x_m + V$ so, dass das resultierende Residuum $r_{m+1} := b Ax_{m+1}$ senkrecht auf einem gewählten Testraum \mathcal{W} (hier $\mathcal{W} = \mathcal{V} = \operatorname{span}\langle r_m \rangle$) steht.

In Worten

Konstruktion der Iterierten so, dass die Projektionen der Residuen auf den Testraum verschwinden.

In Matrix-Schreibweise

Sei V die Matrix der Basisvektoren von \mathcal{V} , W entsprechend für \mathcal{W} . Dann suchen wir $y \in \mathbb{R}^{\dim(\mathcal{V})}$ mit

$$x_{m+1} := x_m + Vy$$
, mit $W^T r_{m+1} = W^T (b - A(x_m + Vy)) = 0$

oder einfacher

$$W^T A V y = W^T r_m$$
.

Noch ein Projektionsverfahren

GAUß-SEIDEL-VERFAHREN

Wähle sukzessive in jedem iten (Sub-)Iterationsschritt

$$\mathcal{W} = \mathcal{V} = \operatorname{span}\langle e_i \rangle$$

den iten Einheitsvektor. Dann erhalten wir

$$y := (e_i^T A e_i)^{-1} (e_i^T r_{m + \frac{i}{n}}) = \frac{1}{a_{ii}} \langle b - A x_{m + \frac{i}{n}}, e_i \rangle.$$

Mit ein paar Umformungen erhalten wir hieraus die Iterationsvorschrift des Gauß-Seidel-Verfahrens.

BEMERKUNG

Für das Gauß-Seidel-Verfahren wurde nie die Symmetrie oder Definitheit gefordert, wie oben beim Gradientenverfahren. Der Projektionszugang ist also allgemeiner als der Minimierungszugang. Es muß nur die Matrix $\boldsymbol{W}^T A \boldsymbol{V}$ invertierbar sein.

Wahl der Such- und Testräume

SATZ

Es gelte entweder

- **4** A ist positiv definit und V = W, oder
- ② A ist nicht singulär und W = AV.

Dann ist W^TAV nicht-singulär für beliebige Basen von W, V.

- Für A (sym.)pos.def. macht also V = W und W = AV Sinn.
- Sowohl das Gradientenverfahren als auch das Gauß-Seidel-Verfahren verwenden eindimensionale Such- und Testräume.
- Bisher haben wir noch kein Verfahren mit höher dimensionalen Such- und Testräumen kennengelernt.
- ullet Noch ein letztes Beispiel mit eindimensionalen ${\mathcal W}$ und ${\mathcal V}.$

Minimal Residual als Projektionsverfahren

Nehmen wir an, dass A positiv definit ist aber nicht symmetrisch und wählen W = AV mit $V = \operatorname{span}\langle r_m \rangle$.

EIN MINIMAL RESIDUAL VERFAHREN

$$\alpha_m = (W^T A V)^{-1} W^T r_m = \frac{\langle A r_m, r_m \rangle}{\langle A r_m, A r_m \rangle}, \quad x_{m+1} = x_m + \alpha_m r_m$$

• Das Verfahren minimiert in jedem Iterationsschritt

$$f(x) := \|b - Ax\|_2^2 = \langle b - Ax, b - Ax \rangle$$

für alle $x = x_m + \alpha_m r_m$ (man bestimmt also $\alpha_m \in \mathbb{R}$).

- Das Verfahren mit obigen Voraussetzungen konvergiert, aber wird so selten verwendet.
- Das eigentliche MINRES-Verfahren kommt gleich!

Allgemeine Räume ${\mathcal V}$ und ${\mathcal W}$

GRUNDSÄTZLICH

Wie immer: Eine Basis von orthonormalen Vektoren ist wünschenswert.

Wahl der Räume

Bisher haben wir immer nur die eindimensionalen Räume span $\langle r_m \rangle$ verwendet. Jetzt wollen wir mehr-dimensionale Krylovräume verwenden.

AUFGABE

Wir müssen also versuchen eine orthonormale Basis für unsere Krylovräume zu konstruieren und wollen dies mit möglichst geringen Kosten!

Orthonormalbasis von $\mathcal{K}(A, v)$

Arnoldi-Prozess

- Gegeben sei eine Matrix $A \in \mathbb{R}^{n \times n}$ und $v \in \mathbb{R}^n$
- Setze $w_1 := \frac{v}{\|v\|}$.
- Iteriere für $k = 1, 2, \dots, n$

$$r_k = Aw_k, \quad h_{i,k} = w_i^* r_k \text{ für } i = 1, 2, \dots, k,$$

und

$$r_k = r_k - \sum_{i=1}^k h_{i,k} w_i, \quad h_{k+1,k} = ||r_k||_2,$$

setze für $h_{k+1,k} \neq 0$

$$w_{k+1} = \frac{1}{h_{k+1,k}} r_k$$

- Die Vektoren w_k bilden eine Orthonormalbasis.
- Die Matrix $H = (h_{i,k}) = W_k^* A W_k$ ist Hessenberg-Matrix.

Orthonormalbasis von $\mathcal{K}(A, v)$

Lanczos-Prozess

Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch und $v_1 = v$ ein beliebiger normierter Vektor. Ferner sei $v_0 = 0$ im \mathbb{R}^n und $\beta_0 = 0$. Dann bilden die Vektoren $\{v_i\}_{i=1}^k$ aus der dreistufigen Rekursionsformel

$$r_{i+1} := (A - \alpha_i \mathbb{I}) v_i - \beta_{i-1} v_{i-1}, \quad v_{i+1} := \frac{r_{i+1}}{\beta_i},$$

mit

$$\beta_i := ||r_{i+1}||, \quad \alpha_i := v_i^* A v_i$$

und i = 1, ..., k - 1 eine Orthonormalbasis von $\mathcal{K}(A, v)$, falls alle $\beta_i \neq 0$.

FULL ORTHOGONALIZATION METHOD

- Gegeben A, x_0 , b und m.
- Setze $r_0 := b Ax_0$, $\beta := ||r_0||$, $v_1 := r_0/\beta$ und $H_m = (h_{i,j}) = 0$.
- Für j = 1, ..., m
 - Setze $w_j := AV_j$
 - Für i = 1, ..., j
 - Setze $h_{i,j} := \langle w_j, v_i \rangle$.
 - Setze $w_j := w_j h_{i,j}v_i$
 - Setze $h_{j+1,j} := ||w_j||$. Falls $h_{j+1,j} = 0$, setze m := j. Sonst $v_{j+1} := w_j/h_{j+1,j}$.
- Setze $y_m = H_m^{-1}(\beta e_1)$ und $x_m = x_0 + V_m y_m$.

MINRES-Verfahren

ALGORITHMUS

- Gegeben eine sym. Matrix $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ und $x_0 \in \mathbb{R}^n$.
- Setze $d_{-1} = 0$, $d_0 = r_0 = b Ax_0$.
- Iteriere für $k = 0, 1, \dots$ bis $||r_{k+1}||_2 \le \epsilon$

$$\alpha_k = \frac{d_k^* A r_k}{d_k^* A^2 d_k}, \quad x_{k+1} = x_k + \alpha_k d_k, \quad r_{k+1} = r_k - \alpha_k A d_k$$

und

$$\beta_k = \frac{d_k^* A^3 d_k}{d_k^* A^2 d_k}, \quad \gamma_k = \frac{d_k^* A^3 d_{k-1}}{d_{k-1}^* A^2 d_{k-1}}, \quad d_{k+1} = A d_k - \beta_k d_k - \gamma_k d_{k-1}$$

• Das Verfahren ist für indefinite symmetrische Matrizen entworfen (A^2 ist dann sym.pos.def.).

GMRES-Verfahren

- Gegeben sei $A \in \mathbb{R}^{n \times n}$, rechte Seite $b \in \mathbb{R}$ und x_0 .
- Setze $r_0 = b Ax_0$, $h_{1,0} = ||r_0||_2$ und k = 0.
- Iteriere $k = 1, 2, \dots$ bis $h_{k+1,k} \le \epsilon$ gilt: Berechne

$$w_k = \frac{1}{h_{k,k-1}} r_{k-1}, \quad r_k = Aw_k, \quad h_{i,k} = w_i^* r_k \text{ für } i = 1, 2, \dots, k$$

und

$$r_k = r_k - \sum_{i=1}^k h_{i,k} w_i, \quad h_{k+1,k} = ||r_k||_2$$

• Löse das Ausgleichsproblem

$$z = \operatorname{argmin}_{v \in \mathbb{R}^k} \|e_1 h_{1,0} - H_k y\|$$

mit $H_k = (h_{i,j}) \in \mathbb{R}^{(k+1) \times k}$ (Hessenberg) uns setze mit $W_k = [w_1, w_2, \cdots, w_k]$

$$x_k = x_0 + W_k z$$

CG-Verfahren

Zu $A \in \mathbb{R}^{n \times n}$ sym.pos.def. definieren wir das quadratische Funktional

$$\Phi(x) = \frac{1}{2}x^*Ax - x^*b.$$

Dies hat ein eindeutiges Minimum. Für $\hat{x} = A^{-1}b$ gilt

$$\Phi(x) - \Phi(\hat{x}) = \frac{1}{2}(x - \hat{x})^* A(x - \hat{x}) \ge 0$$

also ist \hat{x} das eindeutige Minimum von Φ . Um also Ax=b zu lösen, können wir auch argmin $\Phi(x)$ bestimmen.

$$A\hat{x} = b \iff \hat{x} = \operatorname{argmin}_{x \in \mathbb{R}^n} \Phi(x)$$

CG-Verfahren

Die Abweichung des Funktionals von seinem Mininum

$$\Phi(x) - \Phi(\hat{x}) = \frac{1}{2}(x - \hat{x})^* A(x - \hat{x})$$

ist ein vernünftiges Maß, um den Fehler $x - \hat{x}$ zu messen.

$$\frac{1}{2}(x-\hat{x})^*A(x-\hat{x}) =: \frac{1}{2}||x-\hat{x}||_A$$

ist die Energienorm zur Matrix A. Wenn wir das Funktional nun sukzessive minimieren, reduzieren wir auch den Fehler in der Energienorm.

CG-Verfahren

ALGORITHMUS

- Gegeben sym.pos.def. $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ und $x_0 \in \mathbb{R}^n$.
- Setze k = 0, und $d_0 = r_0 = b Ax_0$.
- Iteriere k = 0, 1, 2, ... bis $||r_{k+1}||_2 \le \epsilon$

$$\alpha_k = \frac{\|r_k\|_2^2}{d_k^* A d_k}, \qquad x_{k+1} = x_k + \alpha_k d_k, \qquad r_{k+1} = r_k - \alpha_k d_k$$

und

$$\beta_k = \frac{\|r_{k+1}\|_2^2}{\|r_k\|_2^2}, \qquad d_{k+1} = r_{k+1} + \beta_k d_k$$

EIGENSCHAFTEN

- In exakter Arithmetik direktes, in der Praxis iteratives Verfahren.
 - Konvergenzverhalten durch Kondition der Matrix A bestimmt

nzverhalten durch Kondition der Matrix
$$A$$
 bestimmt $\|x - x_k\|_A \le 2\left(\frac{\sqrt{\kappa_2(A)} - 1}{\sqrt{\kappa_2(A)} + 1}\right)^k \|x - x_0\|_A$

Konvergenz der Verfahren

Wichtiges Hilsmittel für die Konvergenzbeweise:

KANTOROVICH UNGLEICHUNG

B sei symmetrisch positiv definite reelle Matrix mit den extremalen Eigenwerten λ_{\max} und λ_{\min} . Dann gilt

$$\frac{\langle Bx, x \rangle \langle B^{-1}x, x \rangle}{\langle x, x \rangle^2} \le \frac{(\lambda_{\max} + \lambda_{\min})^2}{4\lambda_{\max}\lambda_{\min}}$$

GMRES

Sei $A = X\Lambda X^{-1}$ diagonalisierbar. Dann gilt für die Iterierten des GMRES

$$||b - Ax_k||_2 \le \kappa_2(X)\epsilon_k||b - Ax_0||$$

$$\operatorname{mit} \epsilon_k = \operatorname{min}_{p \in \tilde{\Pi}_k} \operatorname{max}_{i=1,\dots,n} |p(\lambda_i)|.$$

Vorkonditionierung

$$Ax = b \iff W^{-1}Ax = W^{-1}b$$

- W muss regulär sein.
- A ist sym.pos.def, $W^{-1}A$ i.A. nicht.
- Sei W sym.pos.def, dann existiert die Cholesky-Zerlegung

$$W = LL^T$$
 und mit $\tilde{A} := L^{-1}AL^{-T}$, $\tilde{x} := L^Tx$, $\tilde{b} := L^{-1}b$ gilt $\tilde{A}\tilde{x} = \tilde{b}$ wobei

- A sym.pos.def ist.
- Kann man CG-Verfahren auf \tilde{A} anwenden, ohne \tilde{A} , L, L^{-1} explizit zu kennen?

ALTERNATIVES SKALARPRODUKT

$$x^*y = \langle x, y \rangle_2, \quad \langle x, y \rangle_W := \langle x, Wy \rangle_2 = x^*Wy$$

 $W^{-1}A$ nicht symmetrisch bzgl $\langle\cdot,\cdot\rangle_2$, aber symmetrisch bzgl $\langle\cdot,\cdot\rangle_W$

PCG-Verfahren

ALGORITHMUS

- Gegeben sym.pos.def. $A, W \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$ und $x_0 \in \mathbb{R}^n$.
- Setze k = 0, $s_0 = b Ax_0$ und $d_0 = r_0 = W^{-1}s_0$.
- Iteriere k = 0, 1, 2, ... bis $||s_{k+1}||_2 \le \epsilon$

$$\alpha_k = \frac{s_k^* r_k}{d_k^* A d_k}, \qquad x_{k+1} = x_k + \alpha_k d_k, \qquad s_{k+1} = s_k - \alpha_k A d_k$$

und

$$r_{k+1} = W^{-1}s_k, \qquad \beta_k = \frac{s_{k+1}^* r_{k+1}}{s_k^* r_k}, \qquad d_{k+1} = r_{k+1} + \beta_k d_k$$

Wahl des Vorkonditioners W

- Optimaler Vorkonditionierer W = A
- Quasi-optimale Vorkonditionierer $\kappa_2(W^{-1}A) = O(1)$ $W \approx A$
- Berechnung von $W^{-1}x$ muss schnell sein

Vorkonditionierer über Zerlegungen

Unvollständige LR-Zerlegung

- Gegeben sei $A \in \mathbb{R}^{n \times n}$ und ein Besetzungsmuster $E \in \{1, ..., n\} \times \{1, ..., n\}$.
- Setze $\tilde{L} = \mathbb{I}$ und $\tilde{R} = 0$ auf $\tilde{\mathbb{R}}^n$
- Iteriere für $i = 1, 2, \dots, n$
 - Iteriere für $k = 1, 2, \dots, i 1$
 - Falls $(i, k) \in E$, setze $\tilde{L}_{i,k} = \frac{1}{\tilde{R}_{k,k}} (A_{i,k} \sum_{j=1}^{k-1} \tilde{L}_{i,j} \tilde{R}_{j,k})$.
 - Iteriere für $k = i, i + 1, \dots, n$
 - Falls $(i, k) \in E$, setze $\tilde{R}_{i,k} = A_{i,k} \sum_{j=1}^{i-1} \tilde{L}_{i,j} \tilde{R}_{j,k}$
- Es gilt für $(i,j) \in E$, dass $A_{i,j} = (\tilde{L}\tilde{R})_{i,j}$.
- Es gilt für $(i,j) \notin E$, dass $\tilde{L}_{i,j} = 0 = \tilde{R}_{i,j}$
- Für symmetrisches A gilt $\tilde{R} = \tilde{D}\tilde{L}^T$ mit $\tilde{D} = \text{diag}(\tilde{R})$.
- Wir erhalten dann $\tilde{L}\tilde{D}\tilde{L}^T$ als unvollständige Cholesky-Zerlegung von A. Ein PCG-Verfahren mit diesem Vorkonditionierer heißt auch oft ICCG-Verfahren.

Vorkonditionierer über lineare Iterationsverfahren

1. Normalform

Lineare Iteration:
$$\Phi_1(x,b)=M\,x+N\,b$$

Konsistenz: $(A\,x_\star=b\Rightarrow\Phi(x_\star,b)=x_\star)$ \Rightarrow $M+NA=\mathbb{I}$

2. Normalform
$$M = \mathbb{I} - NA$$

$$\Phi_2(x,b) = x - N(A \ x - b)$$

3. Normalform N sei regulär

$$\Phi_2(x_m, b) = x_m - N(A x_m - b) = x_{m+1}, \quad x_m - x_{m+1} = N(A x_m - b)$$

Implizite Definition für x_{m+1}

$$N^{-1}(x_m - x_{m+1}) = A x_m - b, \qquad W(x_m - x_{m+1}) = A x_m - b$$

KLASSISCHE ITERATIONSVERFAHREN

Matrizen der Normalformen

- M Iterationsmatrix
- N Matrix der 2. Normalform
- $W = N^{-1}$ Matrix der 3. Normalform

$$M = \mathbb{I} - NA$$

(Näherung für A^{-1})

(Näherung für A)

Additive Zerlegung von A

$$A = D - L - U$$

KLASSISCHE ITERATIONSVERFAHREN

RICHARDSON
$$W = \frac{1}{\omega}\mathbb{I}$$
,
JACOBI $W = D$,
GAUSS-SEIDEL $W = D - L$,
SOR $W = \frac{1}{\omega}(D - \omega L)$,

$$M = \mathbb{I} - \omega A$$

$$M = \mathbb{I} - D^{-1}A$$

$$M = \mathbb{I} - (D - L)^{-1}A$$

$$M = \mathbb{I} - \omega (D - \omega L)^{-1} A$$

Klassische Iterationsverfahren als Vorkonditionierer

- Die Matrix der 3. Normalform kann als Vorkonditionierer genutzt werden.
- Man erhält die Anwendung von W^{-1} über einen Iterationsschritt mit Startwert 0.