

Algorithmische Mathematik I

Winter Semester 2015 / 2016 Prof. Dr. Sven Beuchler Markus Siebenmorgen

Abgabedatum: **09.12.2015**.

Aufgabenblatt 7.

Aufgabe 1. (Binär Heaps)

Es sei die Zahlenfolge

7, 25, 172, 11, 23, 1, 43, 9, 58, 34, 12, 87, 45

gegeben.

- a) Bauen sie einen Heap minimaler Tiefe, der die angegebenen Zahlen enthält
- b) Fügen Sie die Werte 23 und 77 ein. Geben Sie hierbei die Teilschritte im Baum an.
- c) Entfernen Sie die Einträge 25 und 43 aus dem Baum von Teilaufgabe b) und geben Sie erneut die Teilschritte an.

(4 Punkte)

Aufgabe 2. (Kreise)

Es sei G = (V, E) ein ungerichteter einfacher Graph in dem jeder Knoten mindestens Grad k für $k \ge 2$ hat. Zeigen Sie die zweite Aussage von Lemma 2.3 aus der Vorlesung. Zeigen Sie also, dass es einen Kreis in G mit Mindestlänge k + 1 gibt.

(5 Punkte)

Aufgabe 3. (Hamilton-Kreise)

Ein Hamilton-Kreis in einem Graphen G ist ein Kreis, der jede Ecke von G genau einmal enthält. Zeigen sie, dass ein einfacher ungerichteter Graph mit $n \geq 3$ Ecken einen Hamilton-Kreis enthält, falls der Grad jeder Ecke mindestens n/2 ist.

Hinweis. Zeigen Sie zunächst die folgende Aussage: Es sei G = (V, E) ein einfacher ungerichteter Graph mit $n \geq 3$ Knoten. Desweiteren seien v_1, v_2 zwei nicht adjazente Knoten mit Knotengrad $|\delta(v_1)| + |\delta(v_2)| \geq n$. Dann besitzt G genau dann einen Hamilton-Kreis, falls es einen Hamilton-Kreis in $\tilde{G} = (V, E \cup \{(v_1, v_2)\})$ gibt.

(6 Punkte)

Aufgabe 4. (Hyperwürfel)

Der ungerichtete und einfache Graph Q_n , der sogenannte Hyperwürfel, ist folgendermaßen definiert: Die Eckenmenge V_n besteht aus allen $\{0,1\}$ -Folgen der Länge n, offenbar ist $|V_n| = 2^n$. Zwei Ecken $v_1, v_2 \in V$ werden genau dann durch eine Kante (v_1, v_2) verbunden, wenn sich die beiden $\{0,1\}$ -Folgen von v_1 und v_2 an genau einer Stelle unterscheiden.

- a) Zeichnen Sie Q_2 und Q_3 .
- b) Zeigen Sie, dass Q_n für $n \ge 2$ einen Hamilton-Kreis enthält.

Hinweis. Es bietet sich an die Aussage per Induktion und konstruktiv zu zeigen.

(5 Punkte)

Programmieraufgabe 1. (Präsenzübung: heapsort)

- a) Geben Sie Pseudocodes an für die in der Vorlesung im Zusammenhang mit Heaps vorgestellten Verfahren zum Einfügen und Entfernen eines Elementes.
- b) Verifizieren Sie, dass diese Operationen in einer Laufzeit von $\mathcal{O}(\log(n))$ durchführbar sind.
- c) Schreiben Sie ein C/C++ Programm, dass n Elemente mit Hilfe des Heapsorts sortiert.

Die Präsenzübung wird in der Woche 07.11-11.12 in den Programmiertutorien besprochen.