

Abgabe: 22.12.2015

Übungen zu Einführung in die Grundlagen der Numerik (V2E1)

Wintersemester 2015/16

Prof. Dr. Martin Rumpf — Alexander Effland — Behrend Heeren — Stefan Simon

Übungsblatt 8

Aufgabe 25 4 Punkte

Wir betrachten erneut die Wärmeleitungsgleichung (vgl. Anwesenheitsblatt 5). Sei dazu $\Omega \subset \mathbb{R}^2$ ein polygonales Gebiet, I=(0,1) ein Zeitintervall, $f\in C^0(\Omega)$ eine äußere Wärmequelle und $u_0\in H^1_0(\Omega)$ die gegebene Wärmeverteilung zum Zeitpunkt t=0. Die schwache Formulierung der Wärmeleitungsgleichung ist dann gegeben durch

$$\int_{\Omega} \partial_t u(t,x) \phi(x) + \nabla u(t,x) \cdot \nabla \phi(x) - f(x) \phi(x) \ dx = 0 \quad \forall \phi \in H^1_0(\Omega) \ \forall t \in I.$$

(i) Diskretisieren Sie die schwache Formulierung der Wärmeleitungsgleichung mit stückweise affinen, stetigen FE-Funktionen auf einem Dreicksgitter \mathcal{T} im Ort und finiten Differenzen mit Schrittweite τ in der Zeit. Zur Zeit $t^k = t^{k-1} + \tau$ wird die Ableitung $\partial_t u$ also diskretisiert durch $\frac{u_h^k - u_h^{k-1}}{\tau}$. Weiterhin betrachtet man für ein explizites Verfahren die Ableitung ∇u_h zur alten Zeit t^{k-1} und für ein implizites Verfahren zur neuen Zeit t^k . Leiten Sie jeweils ein Iterationsverfahren für die diskrete Lösung her.

Hinweis: Benutzen Sie Massen- und Steifigkeitsmatrizen M_h und A_h mit Einträgen

$$m_{ij} = \sum_{T \in \mathcal{T}} \int_T \phi_h^j \phi_h^i dx$$
, $a_{ij} = \sum_{T \in \mathcal{T}} \int_T \nabla \phi_h^j \cdot \nabla \phi_h^i dx$.

(ii) Wir betrachten den Interpolationsoperator $\mathcal{I}_h : C^0(\mathcal{T}) \to P_1(\mathcal{T})$, sodass $\mathcal{I}_h(g)$ eine affine Funktion auf T ist gegeben durch

$$\mathcal{I}_h(g)(x_k) = g(x_k)$$

für alle Knotenpunkte x_k .

Die gelumpte Massenmatrix \mathbf{M}_h^l ist dann definiert durch die Einträge

$$m_{ij}^l = \sum_{T \in \mathcal{T}} \int_T \mathcal{I}_h(\phi_h^j \phi_h^i) dx$$
.

Zeigen Sie, dass \mathbf{M}_h^l Diagonalgestalt hat.

(iii) Tauschen Sie im expliziten Iterationsverfahren aus (i) die Massenmatrix \mathbf{M}_h mit der gelumpten Massenmatrix \mathbf{M}_h^l aus. Welchen Vorteil hat dies für die Laufzeit?

Aufgabe 26 4 Punkte

Betrachten Sie eine Dreiecksgitter \mathcal{T}_h in \mathbb{R}^2 , wobei alle Dreiecke $T \in \mathcal{T}$ gleichseitig mit Seitenlänge h sind. Weiterhin bezeichne I die Indexmenge der Knoten in \mathcal{T} . Bestimmen Sie für stückweise affine, stetige finite Elemente-Funktionen auf \mathcal{T} die Einträge der globalen Steifigkeitsmatrix \mathbf{A}_h für einen inneren Knoten mit Index $i \in I$, d.h. berechnen Sie

$$a_{ij} = \sum_{T \in \mathcal{T}} \int_{T} \nabla \phi_{h}^{j} \cdot \nabla \phi_{h}^{i} \, dx$$

für alle $j \in I$, wobei $(\phi_h^i)_{i \in I}$ die Menge der nodalen Basisfunktionen bezeichnet.

Aufgabe 27 4 Punkte

Es sind zwei "Ringe" mit der Parametrisierung $\phi \mapsto (R_i \cos(\phi), R_i \sin(\phi), h_i)^T$ mit $0 < R_1 < R_2$ und $h_i \in \mathbb{R}$ gegeben (mit $|R_1 - R_2|$ und $|h_1 - h_2|$ hinreichend klein). Zwischen diesen "Ringen" soll eine Fläche \mathcal{M}_v mit minimalen Inhalt gespannt werden. Die Parametrisierung dieser Fläche ist wie folgt:

$$\mathbf{X}: (r, \phi) \in [R_1, R_2] \times (0, 2\pi) \mapsto \begin{pmatrix} r\cos(\phi) \\ r\sin(\phi) \\ v(r, \phi) \end{pmatrix} \in \mathcal{M}_v$$

mit $v \in C^1((R_1, R_2) \times (0, 2\pi), \mathbb{R}) \cap C^0([R_1, R_2] \times [0, 2\pi], \mathbb{R})$ und $v(R_i, \phi) = h_i, \phi \in (0, 2\pi)$.

(i) Zeigen Sie, dass für rotationssymmetrische v die Minimierung dieser Fläche äquivalent zur Minimierung von

$$E[u] = \int_{R_1}^{R_2} 2\pi r \sqrt{1 + (u'(r))^2} dr \tag{1}$$

mit $u \in C^1((R_1, R_2), \mathbb{R}) \cap C^0([R_1, R_2], \mathbb{R})$ und $u(R_i) = h_i$ ist.

Hinweis: Benutzen Sie die Formel für den Flächeninhalt parametrisierter Flächen mit Parametrisierung $X : S \to \mathcal{M}_u$:

Area
$$(\mathcal{M}_u) = \int_{\mathcal{S}} \sqrt{\det(D\mathbf{X}^T(x) \cdot D\mathbf{X}(x))} dx$$
.

(ii) Wie lautet die notwendige Bedingung für einen glatten Minimierer von (1)?

Aufgabe 28 4 Punkte

(i) Finden Sie mittels Gerschgorin-Kreisen eine Abschätzung für die Eigenwerte von

$$\mathbf{A} = \begin{pmatrix} 8 & 0 & 1 \\ 0 & 7 & 0 \\ 1 & 0 & 5 \end{pmatrix} .$$

(ii) Für welche $a \in \mathbb{R}$ ist

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & a & -1 \\ 0 & -1 & 1 \end{pmatrix} .$$

eine M-Matrix?