

Abgabe: 22.01.2016

Übungen zu Einführung in die Grundlagen der Numerik (V2E1)

Wintersemester 2015/16

Prof. Dr. Martin Rumpf — Alexander Effland — Behrend Heeren — Stefan Simon

Übungsblatt 9

Programmieraufgabe 5

Sei $\Omega_h = (\mathcal{N}_h, \mathcal{T}_h)$ die Diskretisierung eines polygonal berandeten Gebietes $\Omega \subset \mathbb{R}^2$. Wir betrachten für eine Funktion $f \in L^2(\Omega)$ das Poisson-Problem

$$-\Delta u(x) = f(x), \quad x \in \Omega,$$

mit u(x) = 0 für $x \in \partial \Omega$ sowie die schwache Formulierung

$$\int_{\Omega} \nabla u(x) \cdot \nabla \phi(x) \, \mathrm{d}x = \int_{\Omega} \phi(x) f(x) \mathrm{d}x \qquad \forall \, \phi \in H_0^1(\Omega) \,. \tag{1}$$

In der diskreten Formulierung wird Ω durch Ω_h ersetzt und $V = H_0^1(\Omega)$ durch $V_h = \{\phi_h \in C(\Omega_h) : \phi_h|_T$ stw. affin $\forall T \in \mathcal{T}\}$. Sei ϕ_h^i die Hütchenbasis-Funktion an Knoten $x_i \in \mathcal{N}_h$, d.h. $\phi_h^i \in V_h$ und $\phi_h^i(x_j) = \delta_{ij}$. Testet man (1) nun für alle ϕ_h^i , $i = 1, \ldots, n$ mit $n = |\mathcal{N}_h|$, erhalten wir die Matrix-Vektorschreibweise $\mathbf{A}\mathbf{u} = \mathbf{f}$, wobei $\mathbf{A} \in \mathbb{R}^{n,n}$ und $\mathbf{f} \in \mathbb{R}^n$ mit

$$\mathbf{A}_{ij} = \int_{\Omega_h} \nabla \phi_h^i(x) \cdot \nabla \phi_h^j(x) \, \mathrm{d}x, \quad \mathbf{f}_i = \int_{\Omega_h} \phi_h^i(x) \, f_h(x) \, \mathrm{d}x.$$

Der Vektor $\mathbf{u} \in \mathbb{R}^n$ stellt die Koeffizienten der diskreten Lösung u_h bzgl. der Hütchenbasis dar, d.h. $u_h(x) = \sum_i \mathbf{u}_i \phi_h^i(x)$.

Um eine eindeutige Lösung der Gleichung $\mathbf{A}\mathbf{u}=\mathbf{f}$ zu erhalten, müssen die Randbedingungen berücksichtigt werden. Sei $\mathcal{N}_h^{\partial}\subset\mathcal{N}_h$ die Menge der Randknoten. Dann definieren wir $\mathbf{f}^{\partial}\in\mathbb{R}^n$ und $\mathbf{A}^{\partial}\in\mathbb{R}^{n,n}$ mit

$$\mathbf{A}_{ij}^{\partial} = \left\{ \begin{array}{ll} \mathbf{A}_{ij}, & x_i \notin \mathcal{N}_h^{\partial} \text{ und } x_j \notin \mathcal{N}_h^{\partial} \\ \delta_{ij}, & \text{sonst.} \end{array} \right., \qquad \mathbf{f}_i^{\partial} = \left\{ \begin{array}{ll} \mathbf{f}_i, & x_i \notin \mathcal{N}_h^{\partial} \\ 0, & \text{sonst.} \end{array} \right.$$

und lösen $\mathbf{A}^{\partial}\mathbf{u} = \mathbf{f}^{\partial}$.

Aufgaben:

- (a) Implementieren Sie die Assemblierung der Steifigkeitsmatrix \mathbf{A} , wobei \mathbf{A} eine dünn besetzte Matrix sein soll. Iterieren Sie dazu über alle Elemente $T_m \in \mathcal{T}_h$, berechnen die lokale Matrix $A \in \mathbb{R}^{3,3}$ mit $A_{kl} = \int_T \nabla \phi_h^{m_k}(x) \cdot \nabla \phi_h^{m_l}(x) \, \mathrm{d}x$, wobei $x_{m_0}, x_{m_1}, x_{m_2}$ die Knoten von T_m sind, und addieren Sie A_{kl} zum (m_k, m_l) -ten Eintrag von \mathbf{A} .
- (b) Schreiben Sie eine Methode zur Auswertung des Ausdrucks $\int_{\Omega_h} \phi_h^i(x) \, f_h(x) \, \mathrm{d}x.$
- (c) Schreiben Sie eine Funktion zur Behandlung der Randwerte, d.h. zum Erstellen von A^{∂} und f^{∂} .
- (d) Lösen Sie das System $\mathbf{A}^{\partial}\mathbf{u} = \mathbf{f}^{\partial}$ mit f(x) = 1 auf dem Gebiet $\Omega = [0,1]^2$ und stellen Sie die Lösung u_h graphisch dar.

Hinweise: Auf der Homepage finden Sie ein obj-File, das eine Triangulierung von $[0,1]^2$ darstellt, sowie Codefragmente in C++, die Klassen für eine dünn besetzte Matrix, einen CG-Löser, sowie eine Gitterverwaltung bereit stellen. Ferner finden Sie Plotroutinen und weitere Instruktionen zur Benutzung der vorgegebenen Strukturen.