Scientific Computing I

Winter semester 2015/2016
Prof. Dr. Marc Alexander Schweitzer Sa Wu

Exercise sheet 2.

Submission due Tue, 2015-11-10, before lecture.
Exercise 6. (Derivatives of radial functions, polar coordinates)
a) For $a>0$ consider

$$
u: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}, \quad(x, y) \mapsto \frac{1}{\left(3 x^{2}+y^{2}\right)^{a}}
$$

Calculate $\frac{\partial}{\partial x} u, \frac{\partial^{2}}{\partial y^{2}} u, \nabla u, \Delta u$.
b) Show that, using polar coordinates θ, r, the Laplacian $\Delta=\nabla \cdot \nabla$ in \mathbb{R}^{2} takes the form

$$
\begin{equation*}
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} \tag{4Points}
\end{equation*}
$$

Exercise 7. (The heat equation on an infinite interval)
On the interval \mathbb{R} a solution $u(x, t): \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ of the heat equation

$$
u_{t}=\frac{\partial}{\partial t} u=\Delta u=u_{x x}, \quad u(x, 0)=u_{0}(x)
$$

for continuous and bounded, but otherwise arbitrary initial value u_{0} is given by

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} u_{0}(y) \exp \left(-\frac{(x-y)^{2}}{4 t}\right) \mathrm{d} y
$$

a) Show that u is smooth $\left(C_{\infty}\right)$ for all $t>0$.

Hint: In this particular case here swapping integration and differentiation is allowed.
b) Show that u indeed solves the heat equation with initial value u_{0} in the sense that the equation holds for $t>0$ and

$$
\lim _{(x, t) \rightarrow\left(x_{0}, 0\right)} u(x, t)=u_{0}\left(x_{0}\right)
$$

i.e. the continuous extension of u defined by the integral expression to $t=0$ yields the inital value.

Hint: For an estimate of $\left|u(x, t)-u_{0}\left(x_{0}\right)\right|$ first show that

$$
u(x, t)=u_{0}\left(x_{0}\right)+\int_{\infty}^{\infty}\left(u_{0}(y)-u_{0}\left(x_{0}\right)\right) \exp \left(-\frac{(x-y)^{2}}{4 t}\right) \mathrm{d} y
$$

and split up the remaining integral into integrals over $\left[x_{0}-\delta, x_{0}+\delta\right]$ and $\left(-\infty, x_{0}-\delta\right) \cup\left(x_{0}+\delta, \infty\right)$.
(6 Points)

Exercise 8. (Classification of 2 nd order partial differential equations)
a) Determine the types of the following two partial differential equations.

1) $-4 u_{x x}-3 u_{x y}-u_{y x}-u_{y y}+3 u_{x}-u_{y}+2 u=0$
2) $-3 u_{x x}+12 u_{x y}+2 u_{y y}-6 u_{x}+u_{y}+u=0$
b) Determine the areas in the the (x, y)-plane in which the equation

$$
(1+x) u_{x x}+2 u_{x y}+y u_{y y}+u_{x}=0
$$

is elliptic, parabolic, hyperbolic or ultrahyperbolic and, draw them.

(4 Points)

Programming exercise 4. (A phase diagram with matplotlib)
a) Write a function to draw the empty grid from exercise 8 b) for arbitrary limits and axis labels.
b) Using a), draw the phase diagram from exercise 8b) in Python/matplotlib.

