Scientific Computing I

Winter semester 2015/2016
Prof. Dr. Marc Alexander Schweitzer Sa Wu

Exercise sheet 4.

Submission due Tue, 2015-11-24, before lecture.
Exercise 13. (Stability and consistency for the transport equation)
Consider the linear transport equation

$$
\begin{aligned}
(P u)(x, t)=\partial_{t} u(x, t)+b \partial_{x} u(x, t) & =0, & (x, t) \in(0,1) \times(0, T), \\
u(x, 0) & =g(x), & x \in(0,1) .
\end{aligned}
$$

Now assume that finite difference discretizations $u_{j}^{n}=u\left(x_{j}, t_{n}\right),(D u)_{j}^{n}=0, D$ being the form the equation takes when using discrete operators, fulfilling the CFL condition

$$
|r|:=\left|b \frac{\Delta t}{\Delta x}\right| \leq 1
$$

are given. Further assume that the initial condition g admits a solution $u \in \mathcal{C}^{4}$. Recall that a discretization u_{j}^{n} for the transport equation is called stable if

$$
K^{n}:=\max \left|u_{j}^{n}\right| \leq K^{0}:=\max \left|g\left(x_{j}\right)\right|
$$

Also, recall that the consistency error of this discretization is given by

$$
\left.\tau_{j}^{n}=(P u)\left(x_{j}, t_{n}\right)-(D u)_{j}^{n}\right)
$$

Remark: In some literature the term conditionally stable (i.e. depending on some condition, here CFL) is used. Stability can also be shown with von Neumann stability analysis, i.e. checking boundedness of the amplification factor $G=\max \left|u_{j}^{n+1} / u_{j}^{n}\right| \stackrel{!}{\leq} 1$ for $u(x, t)=\exp (a t+i b x)$ with $a, b \in \mathbb{R}$.
a) Show that the Friedrich method

$$
u_{j}^{n+1}=\frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)-\frac{r}{2}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
$$

is stable and has consistency order 1 in time 2 in space, i.e.

$$
\left|\tau_{j}^{n}\right| \in \mathcal{O}\left(\Delta t+\Delta x^{2}\right)
$$

b) Show that the Lax-Wendroff method

$$
u_{j}^{n+1}=u_{j}^{n}-\frac{r}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)+\frac{r^{2}}{2}\left(u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}\right)
$$

is stable and has consistency order 2 .
Hint: Show that $G^{2}=1-\left(r^{2}-r^{4}\right)(1-\cos (b \Delta x))^{2}$.

Programming exercise 5. (Upwind scheme for the transport equation)
Consider the case of the transport equation used for the introduction of the upwind scheme

$$
u_{j}^{n+1}=u_{j}^{n}+b \frac{\Delta t}{\Delta x}\left(u_{j}^{n}-u_{j-1}^{n}\right)
$$

with $b=1, u_{j}^{n} \approx u\left(x_{j}, t_{n}\right), \Delta x=\frac{1}{M}, x_{j}=j \Delta x, j=0, \ldots, M, \Delta t=\frac{1}{N}, t_{n}=n \Delta t$, $j=0, \ldots, N$, for the initial boundary value problem

$$
\begin{aligned}
\partial_{t} u+b \partial_{x} u & =0 \\
u(0, t) & =0 \\
u(x, 0) & =g(x)
\end{aligned}
$$

$$
\begin{aligned}
(x, t) & \in(0,1) \times(0,1) \\
t & >0 \\
x & \in(0,1) .
\end{aligned}
$$

Let $a=0.2$ and

$$
g_{1}=\left\{\begin{array}{lc}
1 & x \in(0,2 a) \\
0 & \text { otherwise }
\end{array}, \quad g_{2}=\left\{\begin{array}{ll}
\exp \left(-\frac{1}{1-\left(\frac{x-a}{a}\right)^{2}}\right) & x \in(0,2 a) \\
0 & \text { otherwise }
\end{array} .\right.\right.
$$

a) Implement the upwind scheme.
b) Plot the exact solutions to initial data g_{1}, g_{2} at times $t=0,0.25,0.5$ into one figure for each g.
c) For $M=N=2^{4}, 2^{8}$, plot the numerical solutions obtained with the upwind scheme to initial data g_{1}, g_{2} at times $t=0,0.25,0.5$ into one figure for each g.
(3 Points)
Exercise 14. (Consistency estimates for functions with insufficient regularity)
For $0<h<1$ consider the difference operators $\partial^{+}, \partial^{-}, \partial^{0}$ and $\partial^{+} \partial^{-}$applied to the function

$$
u:[0,2] \rightarrow \mathbb{R} \quad x \mapsto \frac{1}{6}\left\{\begin{array}{ll}
-(x-1)^{3} & \text { for } 0 \leq x \leq 1 \\
(x-1)^{3} & \text { for } 1<x \leq 2
\end{array} .\right.
$$

Compute the errors of the difference operators in $x=1$. Compare these results with the theoretical results known from the lecture.
(3 Points)

Exercise 15. (Difference operators for non-uniform mesh widths)
Let h_{W}, h_{E}, h_{N} and h_{S} be arbitrary positive numbers.
a) For $x \in \mathbb{R}$ and $u \in \mathbb{C}^{3}(\mathbb{R})$ let

$$
u_{W}:=u\left(x-h_{W}\right) \quad u_{Z}:=u(x) \quad u_{E}:=u\left(x+h_{E}\right)
$$

Show that

$$
u_{x x}(x)=\frac{2}{h_{E}\left(h_{E}+h_{W}\right)} u_{E}+\frac{2}{h_{W}\left(h_{E}+h_{W}\right)} u_{W}-\frac{2}{h_{E} h_{W}} u_{Z}+\mathcal{O}(h)
$$

with $h:=\max \left\{h_{W}, h_{E}\right\}$. What happens for $h_{E}=h_{W}$?
b) For $(x, y) \in \mathbb{R}^{2}$ and $u \in \mathbb{C}^{3}\left(\mathbb{R}^{2}\right)$ let

$$
\begin{aligned}
& u_{N}:=u\left(x, y+h_{N}\right) \\
& u_{W}:=u\left(x-h_{W}, y\right) \quad u_{E}:=u(x, y) \\
& u_{S}:=u\left(x, y-h_{S}\right)
\end{aligned} \quad
$$

Show that

$$
\begin{aligned}
(\Delta u)(x)= & \frac{2}{h_{E}\left(h_{E}+h_{W}\right)} u_{E}+\frac{2}{h_{W}\left(h_{E}+h_{W}\right)} u_{W}+\frac{2}{h_{S}\left(h_{S}+h_{N}\right)} u_{S} \\
& +\frac{2}{h_{N}\left(h_{S}+h_{N}\right)} u_{N}-\left(\frac{2}{h_{E} h_{W}}+\frac{2}{h_{S} h_{N}}\right) u_{Z}+\mathcal{O}(h)
\end{aligned}
$$

with $h:=\max \left\{h_{W}, h_{E}, h_{N}, h_{S}\right\}$. What happens for $h=h_{E}=h_{W}=h_{N}=h_{S}$?

