Scientific Computing I

Winter semester 2015/2016
Prof. Dr. Marc Alexander Schweitzer Sa Wu

Exercise sheet 6.
Submission due Tue, 2015-12-08, before lecture.
Exercise 20. (The d'Alembert solution of the wave equation)
In the lecture it was mentioned that the one-dimensional wave equation

$$
\begin{aligned}
\partial_{t}^{2} u(x, t) & =c^{2} \partial_{x}^{2} u(x, t) & (x, t) & \in \mathbb{R} \times(0, \infty) \\
u(x, 0) & =u_{0}(x) & x & \in \mathbb{R} \\
\partial_{t} u(x, 0) & =v_{0}(x) & x & \in \mathbb{R}
\end{aligned}
$$

for $c>0, u \in C^{2}(\mathbb{R} \times(0, \infty), \mathbb{R}), u_{0} \in C^{2}(\mathbb{R}), v_{0} \in C^{1}(\mathbb{R})$ has the d'Alembert solution

$$
u(x, t)=\frac{1}{2}\left(u_{0}(x+c t)+u_{0}(x-c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} v_{0}(y) \mathrm{d} y
$$

We will now examine this solution in more detail.
a) Use a change of variables $\xi=x-c t, \eta=x+c t, v(\xi, \eta)=u(x, t)$ to show that the wave equation reduces to

$$
\partial_{\xi} \partial_{\eta} v=0
$$

Follow that $u(x, t)=v(\xi, \eta)=f(\xi)+g(\eta)=f(x-c t)+g(x+c t)$ for some functions f, g.
b) Use the boundary conditions $u(x, 0)=u_{0}(x), \partial_{t} u(x, 0)=v_{0}(x)$ to solve for f, g and obtain the d'Alembert solution.
c) Verify that the d'Alembert solution is actually a valid solution to the given initial value problem.

Programming exercise 6. (An explicit discretization of the wave equation)
The lecture introduced the discretization

$$
\begin{array}{rlrl}
u_{j}^{n+1}=2\left(1-\mu^{2}\right) u_{j}^{n}+\mu^{2}\left(u_{j-1}^{n}+u_{j+1}^{n}\right)-u_{j}^{n-1} & & n \in\{1, \ldots, N-1\}, j \in\{1, \ldots, M-1\} \\
u_{j}^{0}=u_{0}\left(x_{j}\right) & & j \in\{1, \ldots, M-1\} \\
u_{j}^{1}=\left(1-\mu^{2}\right) u_{j}^{0}+\frac{\mu^{2}}{2}\left(u_{j-1}^{0}+u_{j+1}^{0}\right)+\Delta t v_{0}\left(x_{j}\right) & & j \in\{1, \ldots, M-1\} \\
u_{0}^{n}=u_{M}^{n}=0 & & n \in\{0, \ldots, N\} \\
\text { with } \Delta x=\frac{1}{M}, x_{j}=j \Delta x, j=0, \ldots, M, \Delta t=\frac{1}{N}, t_{n} & =n \Delta t, n=0, \ldots, N, \mu=c \frac{\Delta t}{\Delta x}, \\
u_{j}^{n} \approx u\left(x_{j}, t_{n}\right) \text { for the wave equation } & & \\
\partial_{t t} u(x, t)-c^{2} \partial_{x x} u(x, t) & =0 & & \\
u(x, 0) & =u_{0}(x) & & x, t) \in(0,1) \times(0, T) \\
\partial_{t} u(x, 0) & =v_{0}(x) & & x \in(0,1) \\
u(0, t)=u(1, t) & =0 & & x \in(0,1) \\
& & & t \in(0, T)
\end{array}
$$

on the bounded interval $(0,1)$.
a) Show that the discretization for u_{j}^{n+1} with $n \in\{1, \ldots N-1\}$ is stable given the CFL condition $\mu^{2} \leq 1$. Hint: Exercise 18, $\cos x=1-2 \sin ^{2}\left(\frac{x}{2}\right)$.
b) Implement this discretization in Python for

$$
c=2, \quad T=2, \quad M=2^{6}
$$

and, choose N, and thus Δt, to fulfill the CFL condition.
c) Produce insightful plots of the solution u_{j}^{n} for initial values

$$
u_{0}=\left\{\begin{array}{ll}
\exp \left(1-\frac{1}{1-\left(\frac{x-5}{.2}\right)^{2}}\right) & |x-0.5| \leq 0.2 \\
0 & \text { otherwise }
\end{array} \quad v_{0}=0\right.
$$

and for initial values

$$
u_{0}=0
$$

$$
v_{0}=1
$$

Hint: imshow and mplot3d, in particular plot_wireframe.

(6 Points)

Exercise 21. (Comparison principle)
Let Ω be a bounded domain. Let $u_{1}, u_{2} \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ be harmonic with boundary values

$$
\left.u_{1}\right|_{\partial \Omega}=g_{1},\left.\quad u_{2}\right|_{\partial \Omega}=g_{2},\left.\quad g_{1}\right|_{\partial \Omega} \leq\left. g_{2}\right|_{\partial \Omega}
$$

a) Show that

$$
\forall x \in \Omega: \quad u_{1}(x) \leq u_{2}(x)
$$

b) Let Ω be connected and $g_{1}(y)<g_{2}(y)$ for some $y \in \partial \Omega$. Show that

$$
\forall x \in \Omega: \quad u_{1}(x)<u_{2}(x)
$$

(4 Points)

